
- •Введение
- •1.Теоретическая часть
- •1.1 Линейное программирование
- •1.2 Общий вид задач линейного программирования
- •1.3 Транспортная задача
- •1.3.1 Общий вид транспортной задачи
- •1.3.2 Опорный план транспортной задачи
- •1.3.3 Метод северо- западного угла
- •1.3.4 Минимальной стоимости по строке
- •1.3.5 Минимальной стоимости по столбцу
- •1.4 Распределительный метод оптимального плана
- •1.5 Метод потенциалов.
- •1.5.1Формулировка транспортной задачи
- •1.5.2 Алгоритм решения метода потенциалов
- •1.5.3 Вычисление общей стоимости транспортировки
- •1.5.4 Разделение ячеек на базисные и свободные
- •1.5.5 Проверка плана на вырожденность
- •1.5.6 Вычисление потенциалов
- •1.5.7 Проверка решения на оптимальность
- •1.5.8 Построение цикла
- •1.5.9 Перераспределение поставок по циклу
- •1.5.10 Зацикливание решения
- •1.6 Пример решения задачи
- •2. Практическая часть
- •2.1 Постановка задачи
- •2.2 Аналитическое решение задачи
- •2.3 Алгоритм решения транспортной задачи
- •2.3.1 Построение опорного плана методом северо-западного угла
- •2.3.2 Построение опорного плана методом Фогеля
- •2.3.3 Построение оптимального плана методом потенциалов
- •2.4 Программная реализация задачи
- •Заключение
- •Список литературы
Список литературы
Гольштейн, Е.Г. Линейное программирование./ Гольштейн, Е.Г., Юдин, Д.Б. Теория, методы и приложения. – М., Наука, 1969. – с. 424;
Грешилов, А.А. Прикладные задачи математического программирования: учебное пособие для ВУЗов./ Грешилов, А.А. – М., Логос, 2006. – с. 286;
Экономико-математическое и компьютерное моделирование:
Стариков А.В., Кущева И.С. – Воронеж 2008г.
Экономико-математические модели управления производством (теоретические аспекты). Учебное пособие. Ломкова Е.Н., Эпов А.А. – Волгоград 2005г.
Карманов В.Г. Математическое программирование. – М.; Наука, 2000. – 342 с.
Ларионов Ю.И., Хажмурадов М.А., Кутуев Р.А. Методы исследований операций: Часть 1, 2010. – 312 с.
Моисеев Н.Н., Иванов Ю.П., Столярова Е.М. Методы оптимизации. –М.; Наука, 2002. – 340 с.
Шикин Е.В., Чхартишвили А.Г. Математические методы и модели в управлении: Учеб. пособие. – М.: Дело, 2000. – 440 с.