
- •1.2 Стандартная (каноническая) форма задачи линейного программирования
- •1.3 Построение математической модели
- •1.4 Графическое решение задачи линейного программирования
- •1.5 Симплексный метод решения задачи линейного программирования
- •Решение задачи 1 симплексным методом
- •1.6 Искусственное начальное решение. Метод больших штрафов.
- •7 Особые случаи применения симплекс-метода
- •1.7.1 Вырожденное оптимальное решение
- •1.7.2 Бесконечное множество решений
- •1.7.3 Отсутствие допустимых решений
- •1.7.4 Неограниченные решения
- •1.7.5 Промежуточное вырожденное решение
- •1.8 Определение транспортной задачи.
- •1.9 Сбалансированная транспортная модель
- •1.10 Задача о назначениях
- •1.11 Интерпретация симплекс-таблиц – анализ модели на чувствительность
- •4 Изменение запаса ресурса продукта а 7
- •1 Изменение единицы стоимости продукта а 4
- •1.12 Заключение
1.12 Заключение
Из теоретических положений, лежащих в основе построения симплекс-метода, следует, что угловая точка полностью определяется базисным решением ЗЛП, записанной в стандартной форме. Условия оптимальности и допустимости симплекс-алгоритма обеспечивают переход от начальной допустимой угловой точки к смежной угловой точке, соответствую-
щей улучшенному значению целевой
функции. Максимальное количество
итераций, необходимых для получения
оптимума, не превосходит
,
где
– число переменных, а
– число уравнений ЗЛП, представленной
в стандартной форме.
Неограниченность целевой функции или пространства решений, а также отсутствие допустимых решений свидетельствуют о неточностях, допущенных при построении исходной модели, и, следовательно, о необходимости её проверки.
Симплекс-таблица для оптимального решения полезна не только тем, что в ней представлены оптимальные значения переменных. Она содержит также данные, характеризующие статус и ценность различных ресурсов. Анализ модели на чувствительность выявляет определённый интервал значений изменения запасов ресурсов, при которых виды производственной деятельности, представленные в полученном ранее оптимальном решении, остаются неизменными. При анализе модели на чувствительность может быть определён также и некоторый интервал значений изменения коэффициентов удельной прибыли (затрат), при которых сохраняются полученные ранее оптимальные значения переменных.
Использованная литература:
Таха Х., Введение в исследование операций, ч.1. –М.: Мир, 1985. -479 с.
Глаголев А.А., Солнцева Т.В., Курс высшей математики: учебное пособие для студентов экономических специальностей вузов. –М.: Высшая школа, 1971. -654 с.
Данко П.Е. , Попов А.Г., Высшая математика в упражнениях и задачах: учебное пособие для студентов втузов, ч. 3. –М.: Высшая школа, 1974. -416 с.