Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вентцель Определение законов распределения.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
508.42 Кб
Скачать

Глава 7

ОПРЕДЕЛЕНИЕ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН НА ОСНОВЕ ОПЫТНЫХ ДАННЫХ

7.1. Основные задачи математической статистики

Математические законы теории вероятностей не являются беспред» метными абстракциями, лишенными физического содержания; они представляют собой математическое выражение реальных закономер­ностей, фактически существующих в массовых случайных явлениях природы.

До сих пор, говоря о законах распределения случайных величин, мы не затрагивали вопроса о том, откуда берутся, на каком осно­вании устанавливаются эти законы распределения. Ответ на вопрос вполне определенен — в основе всех этих характеристик лежит опыт; каждое исследование случайных явлений, выполняемое методами тео­рии вероятностей, прямо или косвенно опирается на эксперименталь­ные данные. Оперируя такими понятиями, как события и их вероят­ности, случайные величины, их законы распределения и числовые характеристики, теория вероятностей дает возможность теоретиче­ским путем определять вероятности одних событий через вероятности других, законы распределения и числовые характеристики одних случайных величин через законы распределения и числовые характе­ристики других. Такие косвенные методы позволяют значительно экономить время и средства, затрачиваемые на эксперимент, но отнюдь не исключают самого эксперимента. Каждое исследование в области случайных явлений, как бы отвлеченно оно ни было, корнями своими всегда уходит в эксперимент, в опытные данные, в систему наблюдений.

Разработка методов регистрации, описания и анализа статисти­ческих экспериментальных данных, получаемых в результате наблю­дения массовых случайных явлений, составляет предмет специальной науки — математической статистика.

Все задачи математической статистики касаются вопросов обра­ботки наблюдений над массовыми случайными явлениями, но в зави­симости от характера решаемого практического вопроса и от объема

9*

132 Законы распределения случайных величин [гл. 7

имеющегося экспериментального материала эти задачи могут прини­мать ту или иную форму.

Охарактеризуем вкратце некоторые типичные задачи математи­ческой статистики, часто встречаемые на практике.

1. Задача определения закона распределения

случайной величины (или системы случайных

величин) по статистическим данным

Мы уже указывали, что закономерности, наблюдаемые в массо­вых случайных явлениях, проявляются тем точнее и отчетливее, чем больше объем статистического материала. При обработке обширных по своему объему статистических данных часто возникает вопрос об определении законов распределения тех или иных случайных величин. Теоретически при достаточном количестве опытов свойственные этим случайным величинам закономерности будут осуществляться сколь угодно точно. На практике нам всегда приходится иметь дело с огра­ниченным количеством экспериментальных данных; в сбязи с этим результаты наших наблюдений и их обработки всегда содержат боль­ший или меньший элемент случайности. Возникает вопрос о том, какие черты наблюдаемого явления относятся к постоянным, устойчивым и действительно присущи ему, а какие являются случайными и про­являются в данной серии наблюдений только за счет ограниченного объема экспериментальных данных. Естественно, к методике обра­ботки экспериментальных данных следует предъявить такие требо­вания, чтобы она, по возможности, сохраняла типичные, характерные черты наблюдаемого явления и отбрасывала все несущественное, второстепенное, связанное с недостаточным объемом опытного мате­риала. В связи с этим возникает характерная для математической статистики задача сглаживания или выравнивания стати­стических данных, представления их в наиболее компактном виде с помощью простых аналитических зависимостей.

2. Задача проверки правдоподобия гипотез

Эта задача тесно связана с предыдущей; при решении такого рода задач мы обычно не располагаем настолько обширным стати­стическим материалом, чтобы выявляющиеся в нем статистические закономерности были в достаточной мере свободны от элементов случайности. Статистический материал может с ббльшим или меньшим правдоподобием подтверждать или не подтверждать справедливость той или иной гипотезы. Например, может возникнуть такой вопрос: согласуются ли результаты эксперимента с гипотезой о том, что данная случайная величина подчинена закону распределения F(x)? Другой подобный вопрос: указывает ли наблюденная в опыте тен-