
- •Собственная электропроводность п/п
- •Основы квантовой статистики
- •Примесные п/п
- •Электронно-дырочный переход
- •Физические процессы в симметричном р-n – переходе
- •Условия равновесия
- •Изменение концентрации зарядов в р-n – переходе
- •Плотность диффузионного тока
- •Плотность дрейфового тока. Дырочный ток.
- •Ширина запирающего слоя (зс)
- •Различные виды переходов Несимметричный переход
- •Контакт металл - п/п Контакт Ме – n-п/п
- •Контакт Ме – п/п p-типа
- •Пробой p-n-перехода
- •Ёмкости p-n-перехода
- •Полупроводниковые диоды Устройство и классификация п/п диодов
- •Вах диода
- •Статические параметры диодов
- •Зависимость характеристики и параметров от температуры
- •Выпрямительные диоды
- •Параметры вд
- •Параллельное соединение диодов
- •Последовательное включение диодов
- •Особенности германиевых и кремниевых вд
- •Импульсные диоды
- •Стабилитроны и стабисторы
- •Варикапы
- •Транзисторы
- •Приборы с отрицательным сопротивлением
- •Туннельный диод
- •Токи в тд
- •Iвыкл III
- •Тринисторы
- •Симисторы
- •Фотоэлектронные приборы
- •Светодиоды
- •Диод Устройство и принцип действия
- •Предельные параметры диода
- •Устройство и принцип действия триодов
- •Статические параметры триода
- •Тетроды
- •Электронно-лучевые приборы
- •Осциллографические трубки с электростатической фокусировкой и отклонением
Статические параметры триода
Крутизна характеристики S. При UА = const S= ΔIА /Δ UC . Крутизна показывает, на сколько миллиампер изменится анодный ток при изменении напряжения на сетке на 1 В при неизменном UА. Конструктивно S зависит от расстояния между катодом и управляющей сеткой: чем меньше это расстояние, тем сильнее влияние поля сетки на электроны пространственного заряда у катода, тем больше S.
Внутреннее сопротивление Ri . При UC = const Ri = ΔUА/ΔIА . Ri характеризует влияние поля анода на ток IА.
Входное сопротивление RВХ . При UА = const RВХ = Δ UC /ΔIC . Входное сопротивление триода зависит от режима работы: без сеточных токов или с сеточными токами.
Коэффициент усиления μ.. При IА= const μ= - ΔUА / Δ UC ; μ показывает, во сколько раз влияние поля сетки на анодный ток сильнее влияния поля анода.
μ =1/D
Таким образом, чем гуще намотана сетка и меньше влияние электрического поля анода на пространственный заряд у катода, тем больше μ.
К предельным параметрам триода относятся: допустимая мощность, рассеиваемая анодом, допустимое напряжение UА max, допустимый анодный ток. Сущность этих предельных параметров та же, что и в ламповом диоде.
Тетроды
Д
ля
уменьшения проходной ёмкости между
анодом и управляющей сеткой помещается
ещё одна сетка. Дополнительная сетка,
благодаря своей роли, получила название
экранирующей. Тетрод обладает
большим коэффициентом усиления μ,
т.к. управляющая сетка в тетроде редкая,
а на экранирующую сетку подаётся
положительное напряжение +UС2
. При большой проницаемости управляющей
сетки и значительном напряжении UС2
этот триод запирается при сравнительно
большом отрицательном напряжении на
управляющей сетке. В отличие от триода
анод в тетроде закрыт от пространственного
заряда двумя сетками, поэтому влияние
поля анода на электроны пространственного
заряда гораздо меньше, чем поля управляющей
сетки, и поэтому коэффициент усиления
резко возрастает по сравнению с триодом.
А
С2 С1
К
Достоинства:
резкое уменьшение проходной ёмкости и, как следствие, возможность работы на высоких частотах;
большой коэффициент усиления.
Основной недостаток тетрода – наличие динатронного эффекта (Изменение тока в цепях электродов лампы за счёт вторичной эмиссии называется динатронным эффектом.). Появление отрицательного сопротивления вследствие динатронного эффекта ограничивает возможность работы тетрода при малых анодных напряжениях и является серьёзным препятствием к применению тетродов в схемах усиления электрических сигналов. Отсюда возникла необходимость в усовершенствовании тетрода, т.е. при сохранении всех его достоинств потребовалось устранить динатронный эффект. Решение этой проблемы было найдено в двух типах ламп: лучевом тетроде и пентоде.
Лучевые тетроды
В лучевом тетроде динатронный эффект устраняется путём увеличения объёмной плотности электронного потока первичных электронов за счёт его фокусировки в вертикальной и горизонтальной плоскостях. Такой луч образует потенциальный барьер для электронов, выбитых из анода.
Лучевые тетроды применяют в мощных усилителях.
Пентоды
Устранение динатронного эффекта в пентоде происходит путём создания тормозящего поля между анодом и экранирующей сеткой с помощью специальной сетки, которая получила название защитной, или антидинатронной сетки. Для выполнения своей задачи – создания тормозящего поля для вторичных электронов, выбитых из анода, на защитную сетку обычно подаётся нулевой потенциал или реже небольшое постоянное напряжение, отрицательное или положительное, в зависимости от выполняемой лампой функции. Для того чтобы третья сетка не оказывала заметного влияния на скорость движения первичных электронов, проницаемость защитной сетки увеличивается.
Д ля первичных электронов, летящих к аноду с большой скоростью и обладающих большой энергией, защитная сетка не представляет заметного препятствия, но для вторичных электронов, вылетающих с анода с небольшой скоростью, поле защитной сетки является настолько тормозящим, что не позволяет им попасть на экранную сетку предотвращает динатронный эффект.
С3 С2
С1
Статические параметры тетродов и пентодов:
Крутизна характеристики
S= ΔIА /Δ UC , при UА , UС2,UС3 = const
Внутреннее сопротивление
Ri = ΔUА/ΔIА ,при UC1 ,UC2 ,UC3= const
Коэффициент усиления
μ= - ΔUА / Δ UC , при IА= const, UC1, UC3= const