- •От авторов
- •Основные обозначения
- •Раздел I. Основы строительной механики морских судов глава 1. Изгиб и устойчивость стержней-балок и стержневых систем § 1. Изгиб статически определимых балок
- •§ 2. Подбор поперечного сечения балок
- •§ 3. Основные требования, предъявляемые к профилю балок набора
- •§ 4. Изгиб статически неопределимых балок и рам
- •§ 5. Расчет простейших перекрытий
- •§ 6. Устойчивость стержней
- •Глава 2. Изгиб и устойчивость пластин § 7. Пластины в составе судового корпуса, их размеры и характер закрепления на опорном контуре
- •§ 8. Классификация пластин
- •§ 9. Расчет абсолютно жестких пластин
- •§ 10. Расчет пластин конечной жесткости
- •§ 11. Устойчивость пластин
- •Вопросы для повторения
- •Раздел II. Проектирование конструкций корпуса морских судов глава 3. Основные понятия о конструкции корпуса § 12. Общие сведения об архитектурно-конструктивных типах судов
- •§ 13. Основные архитектурно-конструктивные типы судов
- •§ 14. Судовые перекрытия — структурные части корпуса судна
- •§ 15. Системы набора перекрытий. Шпация
- •Вопросы для повторения
- •Глава 4. Общий изгиб и общая продольная прочность судна § 16. Внешние силы, вызывающие общий изгиб судна
- •§ 17. Изгиб судна на тихой воде
- •§ 18. Изгибающие моменты на регулярном волнении
- •§ 19. Изгибающие моменты на нерегулярном волнении
- •§ 20. Требования к общей продольной прочности судна
- •§ 21. Расчет общей прочности
- •§ 22. Силы, действующие на корпус при постановке судна в док и при спуске с продольного стапеля
- •Вопросы для повторения
- •Глава 5. Технический надзор и нормирование прочности судовых конструкций § 23. Правила классификации и постройки морских судов
- •§ 24. Нормирование общей прочности корпуса судна в Правилах Регистра ссср
- •§ 25. Требования к размерам элементов конструкции корпуса
- •Вопросы для повторения
- •Глава 6. Технологичность корпусных конструкций и материалы § 26. Общие положения и принципы технологичности
- •§ 27. Технологичность деталей, узлов и секций корпуса
- •§ 28. Требования к судокорпусным сталям
- •§ 29. Выбор материала для судовых конструкций
- •Вопросы для повторения
- •Глава 7. Наружная обшивка § 30. Требования к наружной обшивке
- •§31. Конструкция наружной обшивки
- •Вопросы для повторения
- •Глава 8. Днищевые перекрытия § 32. Общая характеристика днища сухогрузных судов
- •§ 33. Конструктивные типы днища сухогрузных судов
- •§ 34. Конструкция двойного дна сухогрузных судов
- •§ 35. Особенности конструкции днища наливных и специализированных судов
- •Глава 9. Бортовые перекрытия § 36. Борт сухогрузных судов
- •§ 37. Борт наливных судов
- •§ 38. Усиление бортового набора
- •§ 39. Борт специализированных судов
- •Вопросы для повторения
- •Глава 10. Палубные перекрытия и платформы § 40. Палубы сухогрузных судов
- •§ 41. Конструкция палубных перекрытий сухогрузных судов
- •§ 42. Палуба наливных судов
- •§ 43. Палубы специализированных судов
- •§ 44. Платформы
- •Вопросы для повторения
- •Глава 11. Переборки § 45. Общая характеристика переборок
- •§ 46. Плоские непроницаемые переборки
- •§ 47. Гофрированные и легкие переборки
- •Глава 12. Надстройки, рубки, ограждения § 48. Надстройки
- •§ 49. Рубки
- •Вопросы для повторения
- •Глава 13. Оконечности и штевни корпуса судна § 51. Носовая оконечность
- •§ 52. Кормовая оконечность
- •§ 53. Конструкция штевней
- •Вопросы для повторения
- •Глава 14. Судовые фундаменты § 54. Общие требования к фундаментам
- •§ 55. Конструкция фундаментов под главные механизмы и котлы
- •Вопросы для повторения
- •Глава 15. Расчет местной прочности основных перекрытий корпуса судна § 56. Характеристика расчетных нагрузок и норм местной прочности
- •§ 57. Прочность днищевых перекрытий
- •§ 58. Прочность бортовых перекрытий
- •§ 59. Прочность поперечных и продольных переборок
- •§ 60. Прочность палубных перекрытий
- •§ 61. Примеры определения нагрузки на перекрытия корпуса сухогрузного и наливного судна
- •§ 62. Понятие об общей и местной вибрации корпуса
- •§ 63. Использование эвм при проектировании конструкций корпуса
- •Вопросы для повторения
- •Приложение Справочные данные о профильной стали
- •Список литературы
- •Предметно-тематический указатель
- •Оглавление
- •Isbn 5-7355-0132-1 1
- •Isbn 5-7355-0132-1 © Издательство «Судостроение», 1989. 1
- •Раздел I. Основы строительной механики морских судов 6
- •Глава 1. Изгиб и устойчивость стержней-балок и стержневых систем 6
- •§ 1. Изгиб статически определимых балок 6
- •§ 2. Подбор поперечного сечения балок 14
- •§ 3. Основные требования, предъявляемые к профилю балок набора 18
- •§ 4. Изгиб статически неопределимых балок и рам 20
- •1) Оба конца заделаны и не могут, следовательно, поворачиваться при изгибе балки; 20
- •2) Один конец заделан, второй свободно оперт; не может поворачиваться только сечение балки у заделки. 20
- •§ 5. Расчет простейших перекрытий 32
- •§ 6. Устойчивость стержней 35
- •1) Устойчивое, когда система, мало отклоненная от состояния равновесия под действием приложенной нагрузки, после удаления этой нагрузки, снова возвращается в состояние равновесия; 35
- •2) Неустойчивое, когда при тех же условиях система не возвращается в состояние равновесия, а стремится еще более отклониться от него; 35
- •3) Безразличное, когда при тех же условиях система не возвращается в состояние равновесия и не стремится увеличить отклонение, т. Е. Система имеет бесконечно много положений равновесия. 36
- •Глава 2. Изгиб и устойчивость пластин 39
- •§ 7. Пластины в составе судового корпуса, их размеры и характер закрепления на опорном контуре 39
- •§ 8. Классификация пластин 41
- •§ 9. Расчет абсолютно жестких пластин 42
- •§ 10. Расчет пластин конечной жесткости 48
- •§ 11. Устойчивость пластин 51
- •Раздел II. Проектирование конструкций корпуса морских судов 55
- •Глава 3. Основные понятия о конструкции корпуса 55
- •§ 12. Общие сведения об архитектурно-конструктивных типах судов 55
- •§ 13. Основные архитектурно-конструктивные типы судов 58
- •§ 14. Судовые перекрытия — структурные части корпуса судна 76
- •§ 15. Системы набора перекрытий. Шпация 79
- •Глава 4. Общий изгиб и общая продольная прочность судна 85
- •§ 16. Внешние силы, вызывающие общий изгиб судна 85
- •§ 17. Изгиб судна на тихой воде 87
- •§ 18. Изгибающие моменты на регулярном волнении 94
- •§ 19. Изгибающие моменты на нерегулярном волнении 98
- •§ 20. Требования к общей продольной прочности судна 102
- •§ 21. Расчет общей прочности 108
- •§ 22. Силы, действующие на корпус при постановке судна в док и при спуске с продольного стапеля 115
- •Глава 5. Технический надзор и нормирование прочности судовых конструкций 118
- •§ 23. Правила классификации и постройки морских судов 118
- •§ 24. Нормирование общей прочности корпуса судна в Правилах Регистра ссср 120
- •§ 25. Требования к размерам элементов конструкции корпуса 125
- •Глава 6. Технологичность корпусных конструкций и материалы 132
- •§ 26. Общие положения и принципы технологичности 132
- •§ 27. Технологичность деталей, узлов и секций корпуса 136
- •§ 28. Требования к судокорпусным сталям 138
- •§ 29. Выбор материала для судовых конструкций 140
- •Глава 7. Наружная обшивка 145
- •§ 30. Требования к наружной обшивке 145
- •§31. Конструкция наружной обшивки 149
- •Глава 8. Днищевые перекрытия 155
- •§ 32. Общая характеристика днища сухогрузных судов 155
- •§ 33. Конструктивные типы днища сухогрузных судов 162
- •§ 34. Конструкция двойного дна сухогрузных судов 169
- •§ 35. Особенности конструкции днища наливных и специализированных судов 180
- •Глава 9. Бортовые перекрытия 190
- •§ 36. Борт сухогрузных судов 190
- •§ 37. Борт наливных судов 200
- •§ 38. Усиление бортового набора 205
- •§ 39. Борт специализированных судов 210
- •Глава 10. Палубные перекрытия и платформы 213
- •§ 40. Палубы сухогрузных судов 213
- •§ 41. Конструкция палубных перекрытий сухогрузных судов 221
- •§ 42. Палуба наливных судов 228
- •§ 43. Палубы специализированных судов 233
- •§ 44. Платформы 237
- •Глава 11. Переборки 238
- •§ 45. Общая характеристика переборок 238
- •§ 46. Плоские непроницаемые переборки 243
- •§ 47. Гофрированные и легкие переборки 251
- •Глава 12. Надстройки, рубки, ограждения 257
- •§ 48. Надстройки 257
- •§ 49. Рубки 261
- •§ 50. Ограждения 265
- •Глава 13. Оконечности и штевни корпуса судна 268
- •§ 51. Носовая оконечность 268
- •§ 52. Кормовая оконечность 272
- •§ 53. Конструкция штевней 275
- •Глава 14. Судовые фундаменты 280
- •§ 54. Общие требования к фундаментам 280
- •§ 55. Конструкция фундаментов под главные механизмы и котлы 284
- •Глава 15. Расчет местной прочности основных перекрытий корпуса судна 287
- •§ 56. Характеристика расчетных нагрузок и норм местной прочности 287
- •§ 57. Прочность днищевых перекрытий 289
- •§ 58. Прочность бортовых перекрытий 292
- •§ 59. Прочность поперечных и продольных переборок 296
- •§ 60. Прочность палубных перекрытий 298
- •§ 61. Примеры определения нагрузки на перекрытия корпуса сухогрузного и наливного судна 303
- •§ 62. Понятие об общей и местной вибрации корпуса 305
- •§ 63. Использование эвм при проектировании конструкций корпуса 309
- •213 Скуловой киль 150 Скуловой пояс 147 Стрингер 78 320
Глава 2. Изгиб и устойчивость пластин 39
§ 7. Пластины в составе судового корпуса, их размеры и характер закрепления на опорном контуре 39
Пластины — плоские листовые конструкции, толщина которых существенно мала по сравнению с другими габаритными размерами, ограниченные по толщине двумя поверхностями, а по контуру — двумя рядами параллельных балок Плоскость, равноудаленная от поверхностей, ограничивающих пластину, называется срединной плоскостью пластины (рис. 2.1) 39
В судокорпусостроении пластины нашли широкое применение. Наружная обшивка днища и бортов, настилы палуб и платформ, обшивка переборок, надстроек, рубок и другие связи представляют собой совокупность тонких пластин (примерно 70 % от массы корпуса составляют пластины и только около 30% другие связи). 39
39
Рис. 2.1. Геометрические размеры пластины. 39
Основное назначение пластин корпуса — обеспечивать водонепроницаемость, прочность и жесткость корпуса при любых условиях плавания судна в море. Пластины корпуса испытывают нагрузки от общего продольного изгиба судна в своей плоскости, от местных усилий в виде давления воды на поверхность пластин перпендикулярно их плоскости. 39
Водонепроницаемость корпуса будет обеспечена, если пластины корпуса не разрушатся при действии приложенных к ним общих и местных усилий (т. е. если напряжения и деформации пластин не превысят опасных значений, установленных экспериментальным путем и многолетней практикой эксплуатации судов). Напряжения и деформации пластин при действии заданных нагрузок зависят от размеров пластин и характера закрепления на опорном контуре. По форме пластины судового корпуса могут быть треугольными, круглыми, прямоугольными, но в большинстве случаев они имеют прямоугольную форму с разным отношением сторон. 39
Расчет пластин в общем случае представляет большие математические трудности. Задача значительно упрощается, если рассматривать тонкие пластины. Тонкими принято называть пластины, у которых отношение толщины к наименьшему размеру в плане не превышает 1/5 (т. е. s/b < 1/5). В основном пластины, встречающиеся на практике, относятся к категории тонких (s/b < 1/40). Для них могут быть приняты следующие, упрощающие расчет, допущения: 40
справедлива «гипотеза прямых нормалей» Кирхгофа, согласно которой отрезок перпендикуляра к срединной плоскости до деформации остается прямым и перпендикулярным к срединной плоскости после деформации, причем расстояние между точками перпендикуляра не изменяется (т. е. нормаль не растягивается и не сжимается); 40
нормальные напряжения z в площадках, параллельных срединной плоскости, пренебрежимо малы по сравнению с нормальными напряжениями в поперечных сечениях; справедлив закон Гука. 40
Как и в теории изгиба балок, эти допущения позволяют свести решение трехмерной задачи о напряженно-деформированном состоянии пластины к двухмерной задаче (в теории балок — к одномерной) об отыскании формы срединной плоскости после деформации. Для толстых пластин (плит) все допущения не применимы: любой слой толстой пластины, параллельный срединной плоскости, находится в объемном напряженном состоянии. 40
Изгиб пластин возникает от действия поперечной нагрузки, перпендикулярной срединной плоскости. 40
Пластины судовых перекрытий являются взаимными опорными контурами. Они нагружаются на краях силами, лежащими в их плоскостях и называемыми тангенциальными, или цепными. Поперечная нагрузка р вызывает в основном изгиб пластины, а цепные краевые усилия — растяжение, сжатие и сдвиг пластины в ее плоскости. Напряжения в поперечных сечениях пластины равны сумме изгибных напряжений (изменяющихся по толщине согласно линейному закону) и постоянных по толщине цепных напряжений. Если при определенных условиях одно из слагаемых оказывается намного меньше второго, им можно пренебречь. 40
В данной главе приведены формулы для расчета прочности изотропных пластин, физико-механические свойства которых одинаковы во всех направлениях. Приняты следующие обозначения: а и b — длинная и короткая стороны пластины; Е — модуль нормальной упругости (модуль Юнга) материала; р—интенсивность распределенной нагрузки (давление); q— цепные напряжения; s — толщина пластины; w — максимальный прогиб посередине пластины; — коэффициент Пуассона; изг — изгибные напряжения. 40
