
- •Обыкновенные дифференциальные уравнения.
- •Свойства общего решения.
- •Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Однородные уравнения.
- •Уравнения, приводящиеся к однородным.
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Бернулли.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Уравнения в полных дифференциалах (тотальные).
- •Уравнения Лагранжа и Клеро.
- •Геометрическая интерпретация решений дифференциальных уравнений первого порядка.
- •Численные методы решения дифференциальных уравнений.
- •Метод Эйлера.
- •Метод Рунге – Кутта.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Структура общего решения.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
- •Элементы теории устойчивости.
- •Классификация точек покоя.
- •Уравнения математической физики. Уравнения в частных производных.
- •Линейные однородные дифференциальные уравнения в частных производных первого порядка.
- •Классификация основных типов уравнений математической физики.
- •Уравнение колебаний струны.
- •Решение задачи Коши методом разделения переменных. (Метод Фурье.)
- •Решение задачи Коши методом Даламбера.
- •Уравнение теплопроводности.
- •Уравнение Лапласа.
- •Решение задачи Дирихле для круга.
- •Ряды. Основные определения.
- •Свойства рядов.
- •Критерий Коши. (необходимые и достаточные условия сходимости ряда)
- •Ряды с неотрицательными членами.
- •Признак сравнения рядов с неотрицательными членами.
- •Признак Даламбера.
- •Предельный признак Даламбера.
- •Признак Коши. (радикальный признак)
- •Интегральный признак Коши.
- •Признаки Даламбера и Коши для знакопеременных рядов.
- •Свойства абсолютно сходящихся рядов.
- •Функциональные последовательности.
- •Функциональные ряды.
- •Свойства равномерно сходящихся рядов.
- •Степенные ряды.
- •Теоремы Абеля.
- •Действия со степенными рядами.
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды.
- •Если применить к той же функции формулу Маклорена
- •Решение дифференциальных уравнений с помощью степенных рядов.
- •Ряды Фурье.
- •Тригонометрический ряд.
- •Достаточные признаки разложимости в ряд Фурье.
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций.
- •Ряды Фурье для функций любого периода.
- •Ряд Фурье по ортогональной системе функций.
- •Интеграл Фурье.
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •Преобразование Фурье.
- •Элементы теории функций комплексного переменного.
- •Свойства функций комплексного переменного.
- •Условия Коши – Римана.
- •Интегрирование функций комплексной переменной.
- •Интегральная формула Коши.
- •Ряды Тейлора и Лорана.
- •Теорема о вычетах.
- •Операционное исчисление. Преобразование Лапласа.
- •Свойства изображений.
- •Теоремы свертки и запаздывания.
- •Криволинейные интегралы.
- •Свойства криволинейного интеграла первого рода.
- •Криволинейные интегралы второго рода.
- •Свойства криволинейного интеграла второго рода.
- •Формула Остроградского – Грина.
- •Поверхностные интегралы первого рода.
- •Свойства поверхностного интеграла первого рода.
- •Поверхностные интегралы второго рода.
- •Связь поверхностных интегралов первого и второго рода.
- •Формула Гаусса – Остроградского.
- •Элементы теории поля.
- •Формула Стокса.
- •Содержание:
Криволинейные интегралы.
Определение.
Кривая
(
)
называется непрерывной
кусочно – гладкой,
если функции ,
и
непрерывны на отрезке [a,b]
и отрезок [a,b]
можно разбить на конечное число частичных
отрезков так, что на каждом из них функции
,
и
имеют непрерывные производные, не равные
нулю одновременно.
Если определено не только разбиение кривой на частичные отрезки точками, но порядок этих точек, то кривая называется ориентированнной кривой.
Ориетированная кривая называется замкнутой, если значения уравнения кривой в начальной и конечной точках совпадают.
Рассмотрим
в пространсве XYZ
кривую АВ, в каждой точке которой
определена произвольная функция
.
Разобьем кривую на конечное число отрезков и рассмотрим произведение значения функции в каждой точке разбиения на длину соответствующего отрезка.
Сложив все полученные таким образом произведения, получим так называемую интегральнуюсумму функции f(x, y, z).
Определение. Если при стремлении к нулю шага разбиения кривой на частичные отрезки существует предел интегральных сумм, то этот предел называется криволинейным интегралом от функции f(x, y, z) по длине дуги АВ или криволинейным интегралом первого рода.
Свойства криволинейного интеграла первого рода.
1) Значение криволинейного интеграла по длине дуги не зависит от направления кривой АВ.
2) Постоянный множитель можно выносить за знак криволинейного интеграла.
3) Криволинейный интерал от суммы функций равен сумме криволинейных интегралов от этих функций.
4) Если кривая АВ разбита на дуга АС и СВ, то
5) Если в точках кривой АВ
то
6) Справедливо неравенство:
7) Если f(x, y, z) = 1, то
S – длина дуги кривой, - наибольшая из всех частичных дуг, на которые разбивается дуга АВ.
8) Теорема о среднем.
Если функция f(x, y, z) непрерывна на кривой АВ, то на этой кривой существует точка (x1, y1, z1) такая, что
Для вычисления криволинейного интеграла по длине дуги надо определить его связь с обыкновенным определенным интегралом.
Пусть кривая АВ задана параметрически уравнениями x = x(t), y = y(t), z = z(t),
t , где функции х, у, z – непрерывно дифференцируемые функции параметра t, причем точке А соответствует t = , а точке В соответствует t = . Функция f(x, y, z) – непрерывна на всей кривой АВ.
Для любой точки М(х, у, z) кривой длина дуги АМ вычисляется по формуле
Длина всей кривой АВ равна:
Криволинейный интеграл по длине дуги АВ будет находиться по формуле:
Таким образом, для вычисления криволинейного интеграла первого рода (по длине дуги АВ) надо, используя параметрическое уравнение кривой выразить подынтегральную функцию через параметр t, заменить ds дифференциалом дуги в зависимости от параметра t и проинтегрировать полученное выражение по t.
Пример.
Вычислить интеграл
по одному витку винтовой линии
Если
интегрирование производится по длине
плоской кривой, заданной уравнением
то получаем: