
- •Обыкновенные дифференциальные уравнения.
- •Свойства общего решения.
- •Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Однородные уравнения.
- •Уравнения, приводящиеся к однородным.
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Бернулли.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Уравнения в полных дифференциалах (тотальные).
- •Уравнения Лагранжа и Клеро.
- •Геометрическая интерпретация решений дифференциальных уравнений первого порядка.
- •Численные методы решения дифференциальных уравнений.
- •Метод Эйлера.
- •Метод Рунге – Кутта.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Структура общего решения.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
- •Элементы теории устойчивости.
- •Классификация точек покоя.
- •Уравнения математической физики. Уравнения в частных производных.
- •Линейные однородные дифференциальные уравнения в частных производных первого порядка.
- •Классификация основных типов уравнений математической физики.
- •Уравнение колебаний струны.
- •Решение задачи Коши методом разделения переменных. (Метод Фурье.)
- •Решение задачи Коши методом Даламбера.
- •Уравнение теплопроводности.
- •Уравнение Лапласа.
- •Решение задачи Дирихле для круга.
- •Ряды. Основные определения.
- •Свойства рядов.
- •Критерий Коши. (необходимые и достаточные условия сходимости ряда)
- •Ряды с неотрицательными членами.
- •Признак сравнения рядов с неотрицательными членами.
- •Признак Даламбера.
- •Предельный признак Даламбера.
- •Признак Коши. (радикальный признак)
- •Интегральный признак Коши.
- •Признаки Даламбера и Коши для знакопеременных рядов.
- •Свойства абсолютно сходящихся рядов.
- •Функциональные последовательности.
- •Функциональные ряды.
- •Свойства равномерно сходящихся рядов.
- •Степенные ряды.
- •Теоремы Абеля.
- •Действия со степенными рядами.
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды.
- •Если применить к той же функции формулу Маклорена
- •Решение дифференциальных уравнений с помощью степенных рядов.
- •Ряды Фурье.
- •Тригонометрический ряд.
- •Достаточные признаки разложимости в ряд Фурье.
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций.
- •Ряды Фурье для функций любого периода.
- •Ряд Фурье по ортогональной системе функций.
- •Интеграл Фурье.
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •Преобразование Фурье.
- •Элементы теории функций комплексного переменного.
- •Свойства функций комплексного переменного.
- •Условия Коши – Римана.
- •Интегрирование функций комплексной переменной.
- •Интегральная формула Коши.
- •Ряды Тейлора и Лорана.
- •Теорема о вычетах.
- •Операционное исчисление. Преобразование Лапласа.
- •Свойства изображений.
- •Теоремы свертки и запаздывания.
- •Криволинейные интегралы.
- •Свойства криволинейного интеграла первого рода.
- •Криволинейные интегралы второго рода.
- •Свойства криволинейного интеграла второго рода.
- •Формула Остроградского – Грина.
- •Поверхностные интегралы первого рода.
- •Свойства поверхностного интеграла первого рода.
- •Поверхностные интегралы второго рода.
- •Связь поверхностных интегралов первого и второго рода.
- •Формула Гаусса – Остроградского.
- •Элементы теории поля.
- •Формула Стокса.
- •Содержание:
Однородные уравнения.
Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:
Пример.
Является ли однородной функция
Таким образом, функция f(x, y) является однородной 3- го порядка.
Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.
Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.
Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.
Рассмотрим
однородное уравнение
Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:
Т.к.
параметр t
вообще говоря произвольный, предположим,
что
.
Получаем:
Правая
часть полученного равенства зависит
фактически только от одного аргумента
,
т.е.
Исходное дифференциальное уравнение таким образом можно записать в виде:
Далее
заменяем y
= ux,
.
таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.
Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.
Пример.
Решить уравнение
.
Введем вспомогательную функцию u.
.
Отметим,
что введенная нами функция u
всегда положительна, т.к. в противном
случае теряет смысл исходное
дифференциальное уравнение, содержащее
.
Подставляем в исходное уравнение:
Разделяем
переменные:
Интегрируя,
получаем:
Переходя от вспомогательной функции обратно к функции у, получаем общее решение:
Уравнения, приводящиеся к однородным.
Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.
Это
уравнения вида
.
Если
определитель
то переменные могут быть разделены
подстановкой
где
и
- решения системы уравнений
Пример.
Решить уравнение
Получаем
Находим
значение определителя
.
Решаем
систему уравнений
Применяем
подстановку
в исходное уравнение:
Заменяем
переменную
при подстановке в выражение, записанное
выше, имеем:
Разделяем переменные:
Переходим теперь к первоначальной функции у и переменной х.
Итого,
выражение
является общим интегралом исходного
дифференциального уравнения.
В
случае если в исходном уравнении вида
определитель
то переменные могут быть разделены
подстановкой
Пример.
Решить уравнение
Получаем
Находим
значение определителя
Применяем
подстановку
Подставляем это выражение в исходное уравнение:
Разделяем
переменные:
Далее возвращаемся к первоначальной функции у и переменной х.
таким образом, мы получили общий интеграл исходного дифференциального уравнения.