
- •Обыкновенные дифференциальные уравнения.
- •Свойства общего решения.
- •Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Однородные уравнения.
- •Уравнения, приводящиеся к однородным.
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Бернулли.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Уравнения в полных дифференциалах (тотальные).
- •Уравнения Лагранжа и Клеро.
- •Геометрическая интерпретация решений дифференциальных уравнений первого порядка.
- •Численные методы решения дифференциальных уравнений.
- •Метод Эйлера.
- •Метод Рунге – Кутта.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Структура общего решения.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
- •Элементы теории устойчивости.
- •Классификация точек покоя.
- •Уравнения математической физики. Уравнения в частных производных.
- •Линейные однородные дифференциальные уравнения в частных производных первого порядка.
- •Классификация основных типов уравнений математической физики.
- •Уравнение колебаний струны.
- •Решение задачи Коши методом разделения переменных. (Метод Фурье.)
- •Решение задачи Коши методом Даламбера.
- •Уравнение теплопроводности.
- •Уравнение Лапласа.
- •Решение задачи Дирихле для круга.
- •Ряды. Основные определения.
- •Свойства рядов.
- •Критерий Коши. (необходимые и достаточные условия сходимости ряда)
- •Ряды с неотрицательными членами.
- •Признак сравнения рядов с неотрицательными членами.
- •Признак Даламбера.
- •Предельный признак Даламбера.
- •Признак Коши. (радикальный признак)
- •Интегральный признак Коши.
- •Признаки Даламбера и Коши для знакопеременных рядов.
- •Свойства абсолютно сходящихся рядов.
- •Функциональные последовательности.
- •Функциональные ряды.
- •Свойства равномерно сходящихся рядов.
- •Степенные ряды.
- •Теоремы Абеля.
- •Действия со степенными рядами.
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды.
- •Если применить к той же функции формулу Маклорена
- •Решение дифференциальных уравнений с помощью степенных рядов.
- •Ряды Фурье.
- •Тригонометрический ряд.
- •Достаточные признаки разложимости в ряд Фурье.
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций.
- •Ряды Фурье для функций любого периода.
- •Ряд Фурье по ортогональной системе функций.
- •Интеграл Фурье.
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •Преобразование Фурье.
- •Элементы теории функций комплексного переменного.
- •Свойства функций комплексного переменного.
- •Условия Коши – Римана.
- •Интегрирование функций комплексной переменной.
- •Интегральная формула Коши.
- •Ряды Тейлора и Лорана.
- •Теорема о вычетах.
- •Операционное исчисление. Преобразование Лапласа.
- •Свойства изображений.
- •Теоремы свертки и запаздывания.
- •Криволинейные интегралы.
- •Свойства криволинейного интеграла первого рода.
- •Криволинейные интегралы второго рода.
- •Свойства криволинейного интеграла второго рода.
- •Формула Остроградского – Грина.
- •Поверхностные интегралы первого рода.
- •Свойства поверхностного интеграла первого рода.
- •Поверхностные интегралы второго рода.
- •Связь поверхностных интегралов первого и второго рода.
- •Формула Гаусса – Остроградского.
- •Элементы теории поля.
- •Формула Стокса.
- •Содержание:
Признак Даламбера.
(Жан Лерон Даламбер (1717 – 1783) – французский математик)
Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
то ряд сходится, если же для всех достаточно больших n выполняется условие
то ряд расходится.
Предельный признак Даламбера.
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.
Если
существует предел
,
то при
< 1 ряд сходится, а при
> 1 – расходится. Если
= 1, то на вопрос о сходимости ответить
нельзя.
Пример.
Определить сходимость ряда
.
Вывод: ряд сходится.
Пример.
Определить сходимость ряда
Вывод: ряд сходится.
Признак Коши. (радикальный признак)
Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
,
то ряд сходится, если же для всех достаточно больших n выполняется неравенство
то ряд расходится.
Следствие.
Если существует предел
,
то при <1
ряд сходится, а при >1
ряд расходится.
Пример.
Определить сходимость ряда
.
Вывод: ряд сходится.
Пример.
Определить сходимость ряда
.
Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.
,
таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.
Интегральный признак Коши.
Если
(х)
– непрерывная положительная функция,
убывающая на промежутке
[1;),
то ряд (1)
+ (2)
+ …+ (n)
+ … =
и несобственный интеграл
одинаковы в смысле сходимости.
Пример.
Ряд
сходится при >1
и расходится 1
т.к. соответствующий несобственный
интеграл
сходится при >1
и расходится 1.
Ряд
называется общегармоническим
рядом.
Следствие.
Если f(x)
и (х)
– непрерывные функции на интервале (a,
b]
и
то интегралы
и
ведут себя одинаково в смысле сходимости.
Знакопеременные ряды.
Знакочередующиеся ряды.
Знакочередующийся ряд можно записать в виде:
где
Признак Лейбница.
Если
у знакочередующегося ряда
абсолютные величины ui
убывают
и общий член стремится к нулю
,
то ряд сходится.
Абсолютная и условная сходимость рядов.
Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).
(1)
и ряд, составленный из абсолютных величин членов ряда (1):
(2)
Теорема. Из сходимости ряда (2) следует сходимость ряда (1).
Определение.
Ряд
называется
абсолютно
сходящимся,
если сходится ряд
.
Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.
Определение. Ряд называется условно сходящимся, если он сходится, а ряд расходится.