
- •Обыкновенные дифференциальные уравнения.
- •Свойства общего решения.
- •Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Однородные уравнения.
- •Уравнения, приводящиеся к однородным.
- •Разделяем переменные:
- •Линейные уравнения.
- •Линейные однородные дифференциальные уравнения.
- •Линейные неоднородные дифференциальные уравнения.
- •Метод Бернулли.
- •Метод Лагранжа.
- •Подставляем полученное соотношение в исходное уравнение
- •Уравнение Бернулли.
- •Уравнения в полных дифференциалах (тотальные).
- •Уравнения Лагранжа и Клеро.
- •Геометрическая интерпретация решений дифференциальных уравнений первого порядка.
- •Численные методы решения дифференциальных уравнений.
- •Метод Эйлера.
- •Метод Рунге – Кутта.
- •Дифференциальные уравнения высших порядков.
- •Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.
- •Уравнения, не содержащие явно независимой переменной.
- •Линейные дифференциальные уравнения высших порядков.
- •Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Структура общего решения.
- •Общее решение линейного однородного дифференциального уравнения второго порядка.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- •Нормальные системы обыкновенных дифференциальных уравнений.
- •Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
- •Элементы теории устойчивости.
- •Классификация точек покоя.
- •Уравнения математической физики. Уравнения в частных производных.
- •Линейные однородные дифференциальные уравнения в частных производных первого порядка.
- •Классификация основных типов уравнений математической физики.
- •Уравнение колебаний струны.
- •Решение задачи Коши методом разделения переменных. (Метод Фурье.)
- •Решение задачи Коши методом Даламбера.
- •Уравнение теплопроводности.
- •Уравнение Лапласа.
- •Решение задачи Дирихле для круга.
- •Ряды. Основные определения.
- •Свойства рядов.
- •Критерий Коши. (необходимые и достаточные условия сходимости ряда)
- •Ряды с неотрицательными членами.
- •Признак сравнения рядов с неотрицательными членами.
- •Признак Даламбера.
- •Предельный признак Даламбера.
- •Признак Коши. (радикальный признак)
- •Интегральный признак Коши.
- •Признаки Даламбера и Коши для знакопеременных рядов.
- •Свойства абсолютно сходящихся рядов.
- •Функциональные последовательности.
- •Функциональные ряды.
- •Свойства равномерно сходящихся рядов.
- •Степенные ряды.
- •Теоремы Абеля.
- •Действия со степенными рядами.
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •Разложение функций в степенные ряды.
- •Если применить к той же функции формулу Маклорена
- •Решение дифференциальных уравнений с помощью степенных рядов.
- •Ряды Фурье.
- •Тригонометрический ряд.
- •Достаточные признаки разложимости в ряд Фурье.
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций.
- •Ряды Фурье для функций любого периода.
- •Ряд Фурье по ортогональной системе функций.
- •Интеграл Фурье.
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •Преобразование Фурье.
- •Элементы теории функций комплексного переменного.
- •Свойства функций комплексного переменного.
- •Условия Коши – Римана.
- •Интегрирование функций комплексной переменной.
- •Интегральная формула Коши.
- •Ряды Тейлора и Лорана.
- •Теорема о вычетах.
- •Операционное исчисление. Преобразование Лапласа.
- •Свойства изображений.
- •Теоремы свертки и запаздывания.
- •Криволинейные интегралы.
- •Свойства криволинейного интеграла первого рода.
- •Криволинейные интегралы второго рода.
- •Свойства криволинейного интеграла второго рода.
- •Формула Остроградского – Грина.
- •Поверхностные интегралы первого рода.
- •Свойства поверхностного интеграла первого рода.
- •Поверхностные интегралы второго рода.
- •Связь поверхностных интегралов первого и второго рода.
- •Формула Гаусса – Остроградского.
- •Элементы теории поля.
- •Формула Стокса.
- •Содержание:
Уравнение колебаний струны.
Определение. В математической физике струной называется тонкая нить, в которой возможно возникновение напряжений только в продольном, но не в поперечном направлении.
Пусть концы натянутой струны закреплены в точках х = а и x = b, возникающие в ней напряжения обозначим Т. Будем также считать, что плотность струны постоянна на всем ее протяжении.
Допустим, что в момент t0 = 0 струна выведена из состояния равновесия и совершает малые колебания.
Отклонение струны в каждой точке с координатой х в момент времени t обозначим как
u
C
B
A
D
0 a x x+x b x
На произвольный элемент длины нити (х, х + х) действуют две силы натяжения
и
.
При этом:
Если считать колебания малыми, то можно принять:
Тогда проекция силы на ось u:
Проекция силы на ось u:
Находим сумму этих проекций:
Выражение, стоящее в правой части равенства получено в результате применения теоремы Лагранжа к выражению, стоящему слева.
Произведение массы на ускорение рассматриваемого элемента струны равно:
где - плотность струны.
Приравнивая полученное выражение к значению проекции силы, получим:
Или
Для полного определения движения струны полученного уравнения недостаточно. Функция u(x, t) должна еще удовлетворять граничным условиям, описывающим состояние струны на концах (в точках x = a и x = b) и начальным условиям, описывающим состояние струны в момент времени t = 0.
Совокупность граничных и начальных условий называется краевыми условиями.
Таким образом, задача Коши состоит в нахождении решения линейного дифференциального уравнения с частными производными второго порядка при начальных условиях
и краевых условиях
.
Начальные условия показывают, в каком положении находится струна в начальный момент времени и скорость каждой ее точки в начальный момент времени.
Функции f(x) и F(x) заданы.
Краевые условия показывают, что концы струны закреплены в точках a = 0, b = l
Решение задачи Коши методом разделения переменных. (Метод Фурье.)
Решение уравнения
будем
искать в виде
при граничных условиях:
Тогда X(0) = X(l) = 0.
Подставим решение в исходное уравнение:
Можно показать, что функции Х и Т имеют вид:
Все решения исходного дифференциального уравнения, удовлетворяющие граничным условиям, можно записать в виде:
Окончательно решение уравнения колебаний струны можно записать в виде:
где
Решение задачи Коши методом Даламбера.
( Жан Лерон Д’Ламбер (1717 – 1783) – французский математик)
В случае если длина струны очень велика, то на колебания, возникающие в середине струны, концы струны влияния практически не оказывают. Поэтому, рассматривая колебания бесконечной струны, уравнение
решается только при начальных условиях:
Для нахождения решения введем новые переменные:
Тогда исходное уравнение принимает вид:
Решением
этого уравнения будет функция
,
где
и
- некоторые функции, которые будем
считать дважды дифференцируемыми.
Получаем:
Если продифференцировать полученный ответ, получим:
Т.е.
.
Далее с использованием начальных условий находим функции и .
Проинтегрировав последнее равенство на отрезке [0, x], получаем:
Тогда:
Решение задачи Коши получаем в виде:
Эта формула называется формулой Даламбера.