- •Предмет эконометрики. Методология эконометрического исследования.
- •Типы моделей. Спецификации моделей.
- •Типы экономических данных.
- •Модель парной регрессии.
- •Параметры, характеризующие качество линейной модели.
- •Метод наименьших квадратов в регрессионном анализе.
- •Линейная модель регрессии.
- •Выражение параметров линейной модели регрессии через средние значения исходных данных.
- •Статистические характеристики оценок параметров парной линейной регрессии.
- •Теорема Гаусса-Маркова.
- •Проверка значимости параметров линейной модели.
- •Проверка значимости линейной модели в целом.
- •Нелинейная регрессия и ее классификация.
- •Варианты сведения нелинейной регрессии к линейной.
- •Оценка параметров линейной регрессии и коэффициента корреляции.
- •Прогнозирование в случае линейной модели регрессии, интервальные
- •Доверительные интервалы прогнозируемых значений линейной модели.
- •Варианты получения доверительных интервалов прогнозируемых значений и их характеристика.
- •Корреляция для нелинейной модели регрессии
- •Средняя ошибка аппроксимации.
- •Статистическая характеристика корреляции нелинейной модели регрессии .
- •Множественная линейная регрессия в скалярной и векторной формах.
- •Выбор структуры уравнения множественной регрессии.
- •Оценка параметров уравнения множественной регрессии.
- •Временные ряды, основные элементы временного ряда.
- •Автокорреляция уровней временного ряда и выявление его структуры.
- •Моделирование тенденции временного ряда.
- •Аддитивная модель временного ряда.
- •Мультипликативная модель временного ряда.
- •Моделирование сезонных и циклических колебаний временных рядов.
- •Метод скользящей средней в моделировании временных рядов.
- •Метод фиктивных переменных в моделировании сезонных колебаний
- •Моделирование тенденции временного ряда при наличии структурных изменений.
- •Временные ряды и прогнозирование.
- •Доверительные интервалы для прогнозируемых значений временных рядов.
- •Мультиколлинеарность данных.
Мультиколлинеарность данных.
Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных. Следствием мультиколлинеарности является линейная зависимость между столбцами наблюдений или между столбцами матрицы. В результате, матрица X′X становится плохо обусловленной, что приводит к неустойчивости оценок коэффициентов регрессии, когда незначительные изменения данных наблюдений приводят к значительным изменениям оценок.
Проверка наличия мультиколлинеарности основывается на анализе матрицы парных корреляций между факторами
Коэффициенты парной корреляции rxix j между объясняющими переменными используются для выявления дублирующих факторов. Линейная зависимость между объясняющими переменными xi и xj считается установленной, если выполняется условие >0,8
rxi x j , а сами факторы называются явно коллинеарными (эмпирическое правило). Один из факторов должен быть исключен из
модели. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.
Для выявления мультиколлинеарности факторов можно использовать коэффициенты множественной детерминации полученные
по уравнениям регрессии, в которых качестве зависимой переменной рассматривается один из факторов. Чем ближе значение коэффициента детерминации к единице, тем сильнее проявляется мультиколлинеарность факторов. Согласно эмпирическому правилу, при значении коэффициента множественной детерминации Rx1|x2x3...xp > 0,6 мультиколлинеарность факторов считается установленной. Оставляя в уравнении регрессии факторы с минимальной величиной коэффициента множественной детерминации, можно исключить мультиколлинеарность факторов.
