Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_Ekonometrika.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.37 Mб
Скачать
  1. Мультиколлинеарность данных.

Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных. Следствием мультиколлинеарности является линейная зависимость между столбцами наблюдений или между столбцами матрицы. В результате, матрица X′X становится плохо обусловленной, что приводит к неустойчивости оценок коэффициентов регрессии, когда незначительные изменения данных наблюдений приводят к значительным изменениям оценок.

Проверка наличия мультиколлинеарности основывается на анализе матрицы парных корреляций между факторами

Коэффициенты парной корреляции rxix j между объясняющими переменными используются для выявления дублирующих факторов. Линейная зависимость между объясняющими переменными xi и xj считается установленной, если выполняется условие >0,8

rxi x j , а сами факторы называются явно коллинеарными (эмпирическое правило). Один из факторов должен быть исключен из

модели. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Для выявления мультиколлинеарности факторов можно использовать коэффициенты множественной детерминации полученные

по уравнениям регрессии, в которых качестве зависимой переменной рассматривается один из факторов. Чем ближе значение коэффициента детерминации к единице, тем сильнее проявляется мультиколлинеарность факторов. Согласно эмпирическому правилу, при значении коэффициента множественной детерминации Rx1|x2x3...xp > 0,6 мультиколлинеарность факторов считается установленной. Оставляя в уравнении регрессии факторы с минимальной величиной коэффициента множественной детерминации, можно исключить мультиколлинеарность факторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]