- •Классификация экономико-математических моделей по области использования решаемой задачи.
- •4 . Классиф-я экономико-мат-х моделей по хар-у решаемой задачи.
- •Моделирование принятия решения.
- •Моделирование в компьютерных информационных системах. Варианты моделей.
- •Примеры однопараметрических моделей.
- •Элементы математического программирования используемые в моделировании.
- •Программное обеспечение п.К. Используемое в моделировании.
- •Специализированное программное обеспечение, ее характеристики.
- •Основные направления математического программирования.
- •Элементы линейного программирования и характеристика областей их применения.
- •Никоноров Программное обеспечение для решения распределительных задач.
- •Распределительные задачи и варианты их реализации на п.К.
- •Математическая запись распределительных задач.
- •Оптимиз-е задачи и вар-ы их реализации на п.К.
- •Математическая запись оптимизационных задач.
- •Использование информационных систем для поддержки принятия управленческого решения.
- •Методы анализа рисков. Имитационное моделирование.
- •Модели межотраслевого баланса и их реализация на п.К.
- •Алгоритм построения модели межотр-о баланса.
- •Модель международной торговли и варианты их реализации на п.К.
- •Эконометрические методы построения моделей и реализация на п.К.
- •Основные элементы, используемые при построении эконометрических моделей.
- •Алгоритм построения эконом-х моделей.
- •Генерация возможных вариантов решений и формирование на их основе управленческого решения.
- •Эконометрические модели и прогнозирование.
- •Классификация эконометрических моделей.
- •Элементы корреляционного и регрессионного анализа в процедуре принятия решения.
- •Принятие решения в условиях неопределенности.
- •Информационные системы и их применение в моделировании социально-экономических процессов.
4 . Классиф-я экономико-мат-х моделей по хар-у решаемой задачи.
Факторные модели. В группу экономико-математических факторных моделей входят модели, которые с одной стороны включают экономические факторы, от которых зависит состояние управляемого экономического объекта, а с другой – зависимые от этих факторов параметры состояния объекта. Если факторы известны, то модель позволяет определить искомые параметры. Факторные модели чаще всего предоставлены простыми в математическом отношении линейными или статическими функциями, которые характеризуют связь между факторами и зависимыми от них параметрами экономического объекта.
Балансовые модели. В основе создания этих моделей лежит балансовый метод – метод взаимного сопоставления материальных, трудовых и финансовых ресурсов и потребностей в них. Описывая экономическую систему в целом, под её балансовой моделью понимают систему уравнений, каждое из которых выражает потребность баланса между изготовленными отдельными экономическими объектами количества продукции и совокупной потребностью в этой продукции. При таком подходе экономическая система состоит из экономических объектов, каждый из которых выпускает некоторый продукт.
Основу информационного обеспечения балансовых моделей в экономике составляет матрица коэффициентов затрат ресурсов по конкретным направлениям их использования. Выстраивая модель межотраслевого баланса (МОБ), применяют специфическое понятие чистой, или технологической отрасли, т.е. условной отрасли, которая соединяет все производство соответствующего продукта независимо от форм собственности предприятий и фирм, которые его изготовляют.
Оптимизационные модели. Большой класс экономико-математических моделей образуют оптимизационные модели, которые позволяют выбрать со всех решений наилучший оптимальный вариант. В математическом содержание оптимальность понимается как достижение экстремума критерия оптимальности, называемой также целевой функцией. Оптимизационные модели чаще всего используются в задачах нахождения лучшего способа использования экономических ресурсов, что позволяет достичь максимальный целевой эффект.
Из другого источника
По к о н к р е т н о м у п р е д н а з н а ч е н и ю , т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др.
Экономико-математические модели могут классифицироваться также по х а р а к т е ри с т и к е м а т е м а т и ч е с к и х о б ъ е к т о в , включенных в модель, другими словами, по т и п у м а т е м а т и ч е с к о г о а п п а р а т а, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели,
Понятие о компьютерном эксперименте.
Компьютерный (численный) эксперимент — это эксперимент над математической моделью объекта исследования на ЭВМ, который состоит в том что, по одним параметрам модели вычисляются другие ее параметры и на этой основе делаются выводы о свойствах объекта, описываемого математической моделью. Данный вид эксперимента можно лишь условно отнести к эксперименту, потому как он не отражает природные явления, а лишь является численной реализацией созданной человеком математической модели. Действительно, при некорректности в мат. модели — ее численное решение может быть строго расходящимся с физическим экспериментом.
