- •Классификация экономико-математических моделей по области использования решаемой задачи.
- •4 . Классиф-я экономико-мат-х моделей по хар-у решаемой задачи.
- •Моделирование принятия решения.
- •Моделирование в компьютерных информационных системах. Варианты моделей.
- •Примеры однопараметрических моделей.
- •Элементы математического программирования используемые в моделировании.
- •Программное обеспечение п.К. Используемое в моделировании.
- •Специализированное программное обеспечение, ее характеристики.
- •Основные направления математического программирования.
- •Элементы линейного программирования и характеристика областей их применения.
- •Никоноров Программное обеспечение для решения распределительных задач.
- •Распределительные задачи и варианты их реализации на п.К.
- •Математическая запись распределительных задач.
- •Оптимиз-е задачи и вар-ы их реализации на п.К.
- •Математическая запись оптимизационных задач.
- •Использование информационных систем для поддержки принятия управленческого решения.
- •Методы анализа рисков. Имитационное моделирование.
- •Модели межотраслевого баланса и их реализация на п.К.
- •Алгоритм построения модели межотр-о баланса.
- •Модель международной торговли и варианты их реализации на п.К.
- •Эконометрические методы построения моделей и реализация на п.К.
- •Основные элементы, используемые при построении эконометрических моделей.
- •Алгоритм построения эконом-х моделей.
- •Генерация возможных вариантов решений и формирование на их основе управленческого решения.
- •Эконометрические модели и прогнозирование.
- •Классификация эконометрических моделей.
- •Элементы корреляционного и регрессионного анализа в процедуре принятия решения.
- •Принятие решения в условиях неопределенности.
- •Информационные системы и их применение в моделировании социально-экономических процессов.
Оптимиз-е задачи и вар-ы их реализации на п.К.
Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурсов (труда, капитала и пр.), называются оптимизационными.
Оптимизационные задачи (ОЗ) решаются с помощью оптимизационных моделей (ОМ) методами математического программирования.
Структура оптимизационной модели состоит из целевой функции, области допустимых решений и системы ограничений, определяющими эту область. Целевая функция в самом общем виде в свою очередь также состоит из трех элементов:
управляемых переменных; неуправляемых переменных; формы функции (вида зависимости между ними).
Область допустимых решений – это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами, условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.
Если система ограничений несовместима, то область допустимых решений является пустой. Ограничения подразделяются на:
а) линейные (I и II) и нелинейные (III и IV)
б) детерминированные (А,В) и стохастические (группы кривых
Стохастические ограничения являются возможными, вероятностные, случайными.
Оптимизационные задачи решаются методами математического программирования, которые подразделяются на: линейное программирование; нелинейное программирование; динамическое программирование; целочисленное программирование; выпуклое программирование; исследование операций; геометрическое программирование и др.
Главная задача математического программирования – это нахождение экстремума функций при ограничениях в форме уравнений и неравенств.
Рассмотрим оптимизационные задачи, решаемые методами линейного программирования.
Оптимизационные задачи с линейной зависимостью между переменными
Пусть:
-
количество ресурса вида i (i=1,2,…,m);
-
норма расхода i – го ресурса на единицу
j – го вида продукции;
-
количество продукции вида j (j=1,2,…,n);
-
прибыль (доход) от единицы этой продукции
(в задачах на минимум – себестоимость
продукции).
Тогда оптимизационные задачи линейного программирования (ЛП) в общем виде может быть сформулирована и записана следующим образом:
Найти
переменные
,
при которых целевая функция
,
была бы максимальной (минимальной), не нарушая следующих ограничений:
,
,
.
Вcе три случая можно привести к так называемой канонической форме, введя дополнительные переменные:
,
k – количество дополнительных переменных, и условие неотрицательности искомых переменных:
.
В результате решения задачи находится некий план (программа) работы некоторого предприятия. Отсюда и появилось слово «программирование». Слово линейное указывает на линейный характер зависимости как в целевой функции, так и в системе ограничений. Следует еще раз подчеркнуть, что задача обязательно носит экстремальный характер, т.е. состоит в отыскании максимума или минимума (экстремума) целевой функци
