Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
el magn rele peremennogo toka.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
585.68 Кб
Скачать

Электромагнитные реле управления (контакторы, магнитные пускатели, автоматические выключатели)

 

 

В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе под действием электромагнитной силыF3, пропорциональной магнитному потоку Фδ, возникающему в зазоре между якорем и сердечником и создаваемому при протекании тока в обмотке электромагнита:

Так как ток в обмотке электромагнита переменный, то и магнитный поток Фδ, создаваемый этим током в рабочем зазоре, будет также переменным, т. е.

После преобразований получим

или

где μ0 - магнитная постоянная.

Изменение тока I в обмотке и соответствующее изменение электромагнитного усилия во времени изображены на рис. 11.7.

Якорь будет притягиваться к сердечнику под действием среднего значения электромагнитного усилия, т. е. его постоянной составляющей Fэ.cp. Величина Fэ.cp определяется путем тригонометрического преобразования формулы (11.1):

где постоянная составляющая электромагнитного усилия

а переменная составляющая

Из формулы (11.2) следует, что электромагнитное усилие меняется (пульсирует) с удвоенной частотой 2ω, обращаясь в нуль дважды за период питающего (входного) напряжения. Следовательно, якорь реле может вибрировать, периодически оттягиваться от сердечника возвратной пружиной, что вызывает износ его оси, обгорание контактов, прерывание электрической цепи и другие нежелательные явления.

Хотя переменный ток является более распространенным, чем постоянный, реле постоянного тока нашли большее применение, так как они требуют использования шихтованного магнитопровода (набранного из отдельных листов), а также специальных мер для устранения вибрации якоря. Возможно включение реле постоянного тока в сеть переменного тока через выпрямительные устройства. На рис. 11.8 изображены схемы подобных устройств.

Рассмотрим способы устранения вибрации якоря реле переменного тока.

Применение двухфазного реле. На рис. 11.9, а изображена схема двухфазного реле переменного тока, имеющего две обмотки, расположенные на двух сердечниках ЭМ1 и ЭМ2 с общим якорем. Обмотки реле соединены параллельно друг другу. В цепь одной из обмоток включен конденсатор C, благодаря чему токи I1 и I2 в обмотках реле оказываются сдвинутыми по фазе на угол π/2 (рис. 11.9, б). Так как токи в обмотках проходят через нуль в разные моменты времени, то результирующее тяговое усилие Fэ(p),действующее на якорь, никогда не обращается в нуль и имеет постоянное значение, т.е. не содержит переменной составляющей (рис. 11.9, в).

Применение короткозамкнутого витка (экрана), охватывающего часть конца сердечника (расщепленный сердечник), является наиболее эффективным способом устранения вибрации якоря реле.

На рис. 11.10 изображена схема реле переменного тока с короткозамкнутым витком (контакты реле и выводы обмотки на схеме не показаны). Конец сердечника, обращенный к якорю, расщеплен на две части, на одну из которых надета короткозамкнутая обмотка - экран Э (один или несколько витков).

Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмоткиwосн, проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sδ2, в которой размещается короткозамкнутая обмотка (экран), а другая часть потока Ф1 проходит через неэкранированную половину полюса сечением Sδ1.Поток Ф2 наводит в короткозамкнутом витке ЭДС екз, которая создает ток /кз. При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает его отставание относительно потока Ф1 по фазе на угол φ = 60... 80°. Благодаря этому результирующее тяговое усилиеFэ никогда не доходит до нуля, так как потоки проходят через нуль в разные моменты времени.

Классификация реле

Реле классифицируются по различным признакам: по виду входных физических величин, на которые они реагируют; по функциям, которые они выполняют в системах управления; по конструкции и т. д. По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Устройство реле

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.

Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.

Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.

Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.

Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству. Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).

Характеристики реле

О сновные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х < Хср выходная величина равна Уmin, при Х ³ Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср 1 с.

Достоинства и недостатки электромагнитных реле

Э лектромагнитное реле обладает рядом преимуществ, отсутствующих у полупроводниковых конкурентов:

  • - способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;

  • - устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;

  • - исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;

  • - малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;

  • - экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами

Недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.

Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А. Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.

Самые распространенные серии электромагнитных реле управления

Р еле промежуточное серии РПЛ. Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц. Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А

Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.

Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 - 10 А и втягивающими катушками переменного тока - на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 - 10 А.Реле РПУ-3 с втягивающими катушками постоянного тока - на напряжения 24, 48, 60, 110 и 220 В.

 

Р еле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.

 

Основные характеристики реле РП-21. Диапазон напряжений питания, В: постоянного тока - 6, 12, 24, 27, 48, 60, 110 переменного тока частоты 50 Гц - 12, 24, 36, 40, 110, 127, 220, 230, 240 переменного тока частоты 60 Гц - 12, 24, 36, 48, 110, 220, 230, 240 Номинальное напряжение цепи контактов, В: реле постоянного тока - 12...220, реле переменного тока - 12...380 Номинальный ток - 6,0 А Количество контактов замык. / размык. / перекл. - 0...4 / 0...2 / 0...4 Механическая износостойкость - не менее 20 млн. циклов.

Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 - 300 В, коммутируемый ток 0,1 - 3 А

В качестве промежуточных применяются также электромагнитные реле серийРП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Контакторы

Конта́ктор (лат. contāctor «соприкасатель») — двухпозиционный электромагнитный аппарат, предназначенный для частых дистанционных включений и выключений силовых электрических цепей в нормальном режиме работы.

Наиболее широко применяются одно- и двухполюсные контакторы постоянного тока и трёхполюсные контакторы переменного тока. К контакторам из-за частых коммутаций (число циклов включения-выключения для контакторов разной категории изменяется от 30 до 3600 в час) предъявляются повышенные требования по механической и электрической износостойкости. Контакторы как постоянного, так и переменного тока содержат: электромагнитную систему, контактную систему, состоящую из подвижных и неподвижных контактов, дугогасительную систему, систему блок-контактов (вспомогательные контакты, переключающие цепи сигнализации и управления при работе контакторов). В отличие от автоматических выключателей контакторы могут коммутировать только номинальные токи, они не предназначены для отключения токов короткого замыкания.

Управление контактором осуществляется посредством вспомогательной цепи оперативного тока, проходящего по катушкам контактора, напряжением 24, 42, 110/127, 220 или 380 вольт. Для обеспечения безопасности при обслуживании контактора, величина оперативного тока должна быть значительно ниже величины рабочего тока в коммутируемых цепях. Контактор не имеет механических средств для удержания контактов во включенном положении, при отсутствии управляющего напряжения на катушке контактора он размыкает свои контакты. Для удержания контактов в рабочем положении применяется схема «самоподхвата» с использованием пары нормально-открытых контактов или постоянно существующий потенциал, например напряжение с выхода ПЛК.

Как правило, контакторы применяются для коммутации электрических цепей промышленного тока при напряжении до 660 В и токах до 1 600 А. Для использования в качестве контактора могут применяться управляющие реле (англ. control relay), имеющие нормально открытые пары контактов.

Основные области применения контакторов: управление мощными электродвигателями (например, на тяговом подвижном составе — электровозах,тепловозах, электропоездах, трамвайных и троллейбусных вагонах, на лифтах), коммутация цепей компенсации реактивной мощности, коммутация больших постоянных токов.

Маркировка Контакторов

Контакторы переменного тока обычно используют в оборудовании таких машин как трамваи, тепловозы, троллейбусы, вагоны метро, большегрузные автомобили и многие другие. Конкретно, контакторы переменного тока занимаются управлением асинхронных трехфазных двигателей с короткозамкнутым ротором. А также для выведения пусковых резисторов, включения нагревательных устройств и трехфазных трансформаторов, тормозных электромагнитов и многих других электротехнических устройств. Например, контакторы серии КТ предназначены для отключения и включения приемников электрической энергии, а контакторы переменного тока серии КМ, предназначены для функционирования в силовых электрических цепях, которые составляют схемы управления электродвигателями электропогрузчиков. Помимо этого, они также могут применяться в схемах выключателей высокого напряжения для коммутации цепей оперативного включения привода. Контакторы переменного тока разделяются на следующие классификации:

  1. Число главных полюсов. Оно может быть от 1 до 5.

  2. Номинальное напряжение включающей катушки. Для контакторов переменного тока это значение может быть от 12 до 660 В, с частотой тока 50 Гц и от 24 до 660 В при частоте переменного тока 60 Гц.

  3. Номинальный ток главной цепи. Он может быть от 1,5 до 4800А.

  4. Номинальное напряжение главной цепи. От 110 до 1600 В, для переменного тока с частотами 50, 60, 500, 1000, 2400, 8000 и 10000 Гц.

  5. Наличие вспомогательных контактов. Есть или нет дополнительных контактов.

 

Контактная схема

 

Наиболее популярными контакторами являются контакторы переменного тока рассчитанные на номинальный ток от 100 до 1000 А, с числом главных контактов от 1 до 5. Также широко распространены трехполюсные контакторы. Следствием большого количества контактов, является увеличение усилия электромагнита и необходимого для включения контактора момента. Контакторы переменного тока имеют вспомогательные контакты, приводимые в действие тем же электромагнитом, который двигает и главные контакты. Зазор, оставляемый между главными контактами, в контакторах переменного тока, меньше чем в контакторах постоянного тока. По этой причине, возникают наиболее благоприятные условия для гашения дуги, что позволяет сократить размеры, мощность и массу электромагнита.

 

Якорь (4) и подвижный контакт электромагнита связаны между собой посредством вала контактора (6). Контакт в контакторе переменного тока КТ-6000 плоский и без перекатывания. При помощи контактных пружин и подвижных частей, происходит отключение аппарата. Подвижные и неподвижные контакты, для удобства эксплуатации, сделаны сменяемыми. Контактная пружина (2) имеет предварительное сжатие, которое примерно равно половине конечного. На изоляционной рейке (5) закрепляются все детали контактора переменного тока. Рычаг (3) подвижного контакта, закреплен на валу (5), вращающемся на подшипниках (7) и покрытым изоляционным материалом. Катушка (8), сердечник (9), керамическая камера (11) и полюсные пластины (10) составляют в общем, систему дугогашения. Катушка (8) подключена к цепи последовательно вместе с подвижным и неподвижным контактом (12). Выводы (13) и (14) подключают к цепи главные контакты. А гибкая связь (15) и вывод (13) соединяются с подвижным контактом (13). Вращение вала (6) приводит в  действие блок вспомогательных контактов (16). Благодаря тому, что все детали закреплены на рейке, появляется возможность установки контакторов переменного тока в комплексных станциях  с реечной конструкцией, а также уменьшить массу и объем станции управления. Максимально допустимое число включений составляет 1200 в час. В контакторах переменного тока очень часто используется мостиковая контактная система с двумя разрывами цепи на каждый из полюсов (рис. 3.6). Эта система позволяет довольно быстро гасить дуги, если отсутствует гибкая связь.

 

а— магнитная система; б— контактная система

 

 

 

Контакторы серии МК.

 

Данная модель контакторов способна работать как в цепях с постоянным током, так и с переменным. Напряжение в цепи постоянного тока может достигать 440 В, а в цепях с переменным током до 660 В, со значениями частоты тока 50 и 60 Гц соответственно. Сила тока в таких цепях может быть до 160 А. На стальной скобе (1) закрепляются все детали контактора. Здесь на системы главных (6) и вспомогательных контактов (7), действуют изоляционные колодки (4 и 5). В свою очередь, якорь электромагнита (2), притягивается к двум полюсам П-образного электромагнита (3).

 

 

Фирмы производители: Шнайдер Электрик  Tesys или General Electric, ЕКФ, ИФК, АВВ

Магнитные пускатели

Пускатель электромагнитный (магнитный пускатель) — это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления предназначенное для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок. Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; со встроенной тепловой защитой электродвигателя от перегрузки и без нее.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 - 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя. 

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

 

Маркировка магнитных пускателей

Магнитные пускатели предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или его снижении до 50—60% от номинального катушка не удерживает магнитную систему пускателя, и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.

Пускатели классифицируются по сериям ПМА, ПМЛ, ПМЕ, ПМ 12

Принципиальной разницы между ними нет, это аналоги, выпускавшиеся разными заводами, функциональные характеристики похожи. Рекомендуемо заказывать ПМ 12, поскольку это самая новая конструкция, и поставку этих пускателей проще всего обеспечить.

Фирмы производители: «Этал» Концерн «Moeller» Международная компания «Siemens» Международная компания «Schneider Electric», АВВ

Автоматические выключатели

Автоматический выключатель (механический) (МЭС 441-14-20), «автомат» — это механический коммутационный аппарат, способный включать, проводить и отключать токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких как токи короткого замыкания.[1]

Автоматические выключатели предназначены для защиты электрических установок от перегрузок и коротких замыканий, а также для нечастых включений и отключений электрических цепей. Некоторые модели обеспечивают защиту от других аномальных состояний, например, от недопустимого снижения напряжения.

Функция

Автоматические выключатели выполняют одновременно функции защиты и управления. Независимо от выполняемых функции автоматические выключатели подразделяются по собственному времени срабатывания tс, в (времени с момента подачи команды до начала размыкания контактов) на

  • нормальные tc, в=0,02-0,1 с,

  • селективные (tc, в регулируется до 1с)

  • быстродействующие, обладающие токоограничивающим эффектом (tс, в не более 0,005 с).

Классификация

Автоматический выключатель для монтажа на DIN-рейку конструктивно выполнен в диэлектрическом корпусе. Включение-отключение производится рычажком (1 на рисунке), провода подсоединяются к винтовым клеммам (2). Защелка (9) фиксирует корпус выключателя на DIN-рейке и позволяет при необходимости легко его снять (для этого нужно оттянуть защелку, вставив отвертку в петлю защелки). Коммутацию цепи осуществляют подвижный (3) и неподвижный (4) контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным.

  • Тепловой расцепитель представляет собой биметаллическую пластину (5), нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа. Минимальный ток, при котором должен срабатывать[2] тепловой расцепитель, составляет 1,45 от номинального тока предохранителя. Настройка тока срабатывания производится в процессе изготовления регулировочным винтом (6). В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.

  • Магнитный (мгновенный) расцепитель представляет собой соленоид (7), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2÷10 раз от номинала, в зависимости от типа (автоматические выключатели делятся на типы B, C и D в зависимости от чувствительности мгновенного расцепителя).

Во время расцепления контактов может возникнуть электрическая дуга, поэтому контакты имеют особую форму и находятся рядом с дугогасительной решёткой (8).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]