
- •Методична розробка (конспект лекцій)
- •1.1. Інформаційні основи цифрової схемотехніки та інформаційні міри.
- •Інформатика, інформація, сигнали та їхнє представлення.
- •Інформаційні міри.
- •1.2.Системи числення і кодування чисел.
- •1.2.1. Принципи побудови систем числення.
- •1.2.2. Переведення чисел з однієї системи числення в іншу.
- •1.2.3. Спеціальні системи числення.
- •1.2.4. Кодування від’ємних чисел.
- •1.3.Арифметичні операції з числами.
- •1.3.2. Арифметичні операції множення та ділення.
- •1.4. Логічні основи цифрової схемотехніки.
- •1.4.1. Булева алгебра.
- •1.4.2. Основні булеві (перемикальні) функції.
- •1.4.3. Закони, властивості й тотожності.
- •1.4.4. Аналітичне представлення булевих функцій.
- •1.4.5. Мінімізація булевих функцій.
- •Правила мінімізації
- •1.5. Основні характеристики цифрових мікросхем.
- •1.5.1. Поняття елементів, вузлів і пристроїв.
- •1.5.2. Характеристики логічних елементів.
- •1.5.3. Маркування логічних елементів.
- •2.1. Діодні і діодно-транзисторні логічні елементи.
- •2.1.1. Загальні відомості.
- •2.1.2. Діодні логічні елементи. Діодний елемент чи.
- •Діодний елемент і
- •2.1.3. Діодно – транзисторні логічні елементи (дтл). Діодно - транзисторний елемент не.
- •Діодно – транзисторний елемент не – чи.
- •2.2. Транзисторні логічні елементи.
- •2.2.1. Транзисторна логіка (тл).
- •2.2.2. Інтегральна інжекційна логіка ( л). Елемент не – чи.
- •2.2.3. Транзисторно – транзисторні логічні елементи (ттл).
- •Елемент не – і з простим інвертором.
- •2.2.4. Принцип роботи транзисторів Шотки.
- •2.2.5. Логічні елементи емітерно – зв’язкової логіки (езл).
- •2.2.6. Логічні елементи на мон – та мен – транзисторах.
- •2.3. Імпульсна і потенціально – імпульсна системи елементів.
- •2.3.1. Імпульсна система елементів.
- •2.3.2. Потенціально – імпульсна система елементів.
- •2.4. Магнітна схемотехніка.
- •2.4.1.Магнітні схеми на кільцевих осердях.
- •2.4.2. Магнітні елементи із складним магнітопроводом.
- •2.4.3.Поняття про кріоелектронні магнітні елементи.
- •2.5. Тригери.
- •2.5.1. Загальні відомості.
- •2.5.2. Асинхронні та синхронні rs- тригери. Асинхронні rs- тригери.
- •Синхронні rs- тригери.
- •Двоступеневі rs- тригери.
- •3. Накопичувальні і комбінаційні вузли цифрової
- •3.1.Регістри.
- •3.1.1.Загальна характеристика регістрів.
- •3.1.2.Однофазний і парафазний спосіб записування інформації.
- •3.1.3.Мікрооперації в регістрах. Логічні мікрооперації.
- •Мікрооперації зсуву.
- •3.2. Лічильники.
- •3.2.1.Загальна характеристика лічильників.
- •3.2.2. Двійкові лічильники.
- •3.2.3.Двійково – десяткові лічильники.
- •3.3. Дешифратори і шифратори.
- •3.3.2.Основи побудови дешифраторів. Лінійні дешифратори на два входи і чотири виходи.
- •Пірамідальні дешифратори.
- •Прямокутні дешифратори.
- •3.3.3. Загальні відомості про шифратори.
- •3.3.4. Каскадування шифраторів.
- •3.4. Мультиплексори і демультиплексори.
- •Мультиплексори. Загальна характеристика мультиплексорів.
- •Каскадування мультиплексорів.
- •Мультиплексування шин.
- •3.4.2. Демультиплексори. Загальна характеристика демультиплексорів.
- •Каскадування демультиплексорів.
- •Демультиплексування шин.
- •3.5. Схеми порівняння і контролю.
- •3.5.1.Схеми порівняння. Загальні відомості.
- •Схеми порівняння слів з константою.
- •Схеми порівняння двійкових слів а і в.
- •3.5.2. Схеми контролю парності.
- •3.6. Перетворювачі кодів.
- •Перетворювач прямого коду в обернений.
- •Перетворювач двійково-десяткових чисел в код семисегментного індикатора.
- •3.7. Двійкові суматори.
- •3.7.1. Загальна характеристика суматорів.
- •3.7.2.Однрозрядні суматори.
- •3.7.3.Багаторозрядні суматори.
- •4. Цифро – аналогові та аналого – цифрові перетворювачі.
- •4.1. Елементи цап і ацп.
- •4.1.1. Загальні відомості про перетворювачі інформації.
- •4.2.2. Основні елементи цап і ацп. Електронні ключі.
- •Генератор прямокутних імпульсів.
- •Генератор пилоподібної напруги.
- •4.2 Цифро – аналогові перетворювачі.
- •4.2.1.Загальна характеристика цап.
- •4.2.2.Основні схеми цап.
- •4.2.3.Основні параметри і характеристики цап.
- •4.3. Аналого – цифрові перетворювачі інформації.
- •4.3.1. Загальна характеристика ацп.
- •4.3.2.Основні схеми ацп. Компаратор.
- •Ацп послідовної лічби.
- •Ацп паралельної дії.
- •Ацп «Напруга – код».
- •Ацп «Частота - код».
- •4.3.3. Основні параметри і характеристики ацп.
3.2. Лічильники.
3.2.1.Загальна характеристика лічильників.
Лічильником називається типовий функціональний вузол, призначений для
лічби вхідних імпульсів.
Лічильник являє собою зв’язаний ланцюг Т – тригерів, які утворюють пам'ять із заданим числом сталих станів (Мал. 3.40). Розрядність лічильника n дорівнює числу Т – тригерів. Кожний вхідний імпульс змінює стан лічильника, який зберігається до надходження наступного сигналу. Значення виходів тригерів
Qn Qn-1…Q1 відображають результат лічби в прийнятій системі числення. Логічна функція лічильника позначається літерами СТ (counter). Список мікрооперацій лічильника вміщує попереднє встановлення в початковий стан, інкремент або декремент слова, яке зберігається, видачу слів паралельним кодом та ін.
Лічильник є одним з основних функціональних вузлів різних цифрових керуючих та інформаційно – вимірювальних систем і в основному застосовується для:
- утворення послідовності адрес команд програм (лічильник команд або
програмний лічильник);
- підрахунок числа циклів при виконанні операцій ділення, множення, зсуву
(лічильник циклів);
- одержання сигналу мікрооперацій і синхронізації; аналогово – цифрові
перетворення і побудова електронних таймерів (годинників реального часу).
Лічильник характеризується модулем і ємністю лічби. Модуль лічби Клч визначає число станів лічильника. Модуль лічби двійкового n – розрядного лічильника визначається цілим степенем двійки
Клч = .
Після заповнення всіх розрядів лічильника коли Nвх = Клч лічильник повертається в початковий стан. Таким чином, число вхідних імпульсів і стан лічильника однозначно визначені тільки для першого циклу лічби.
Ємність лічби N maх визначає максимальну кількість вхідних імпульсів, яку може зафіксувати лічильник при одному циклі роботи. Ємність лічби N maх = Клч – 1 за умови, що робота лічильника починається з нульового початкового стану.
У лічильниках використовуються три режими роботи: керування, накопичення, ділення. У режимі керування зчитування інформації виконується після кожного вхідного лічильного імпульсу, наприклад, в лічильнику адреси команд. У режимі накопичення головним є підрахунок заданого числа імпульсів або лічба впродовж певного часу. У режимі ділення (перерахунку) основним є зменшення частоти надходження імпульсів в Клч разів.
За
видом переходів прості лічильники (Лч)
розподіляються на підсумовуючі (прямої
лічби) і віднімальні (зворотної лічби).
У підсумовуючих лічильниках кожний
доданій імпульс
U
збільшує стан на одиницю, тобто
реалізується мікрооперація інкремента
Лч
: = Лч
+ 1.
У
віднімальних лічильниках кожний
віднімальний імпульс
U
зменшує
стан на одиницю, тобто
реалізується мікрооперація декремента
Лч
: = Лч
- 1.
Реверсивні лічильники мають переходи в прямому і зворотному напрямках, що дозволяє рахувати підсумовуючі та віднімальні імпульси. Лічильники можуть бути послідовними (асинхронними) або паралельними (синхронними). У послідовних лічильниках тригери послідовно перемикаються після надходження кожного вхідного імпульсу від молодших розрядів до старших. У паралельних лічильниках тригери перемикаються одночасно після надходження кожного вхідного імпульсу.