Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по материалам 1.1.6.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
327.19 Кб
Скачать
  1. Акустические свойства: звукопоглощение, звукоизоляция.

Акустические свойства материалов связаны с взаимодействием материала и звука; прежде всего, это — звукопроводность и звукопоглощение.

Звукопроводность — свойство материала проводить через свою толщу звук; она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые плохо проводят звук.

Звукопроницаемость — отрицательное свойство, так как в большинстве случаев к строительным материалам предъявляются требования изоляциипомещений от внешних шумов.

Звукоизоляция — ослабление звука при его проникновении через ограждающие конструкции — это свойство материала, обратное звукопроницаемости.

Звукопоглощение — свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также от частоты звукового тона, измеряемого количеством колебаний в секунду.

Звукопоглощение За единицу звукопоглощения принимают поглощение звука 1 м2 открытого окна; при открытом окне звук поглощается полностью. Звукопоглощение всех строительных материалов меньше единицы. Звукопоглощение материала оценивают коэффициентом звукопоглощения, т. е. отношением энергии, поглощенной материалом, к общему количеству падающей энергии в единицу времени.

Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью хорошо отражают падающий на них звук, поэтому в помещениях с гладкими стенами создается постоянный шум.

Материалы с развитой открытой пористостью хорошо поглощают и не отражают падающий на них звук. Известно, что ковры, дорожки, мягкая мебель заглушают звук. Специальная акустическая штукатурка с мелкими открытыми порами хорошо поглощает и заглушает звук. В принципе те строительные материалы, которые плохо пропускают через себя звук, хорошо его поглощают и не отражают, являются акустическими материалами.

Уменьшение шума в результате использования таких материалов сохраняет здоровье людей, создает для них определенные условия и способствует повышению производительности труда.

  1. Теплофизические cвойства: теплопроводность, теплоемкость, жаростойкость, термостойкость, огнеупорность, огнестойкость. Пожаротехнические показатели.

К основным теплофизическим свойствам, оценивающим отношение материала к тепловым воздействиям, относятся:

Термостойкость – способность материала выдерживать без разрушений определенное количество резких колебаний температуры. Единицей измерения этого свойства является количество теплосмен, определяемое для многих теплоизоляционных и огнеупорных материалов.

Жаростойкость – способность материала выдерживать температуру эксплуатации до 1000 °С без нарушения сплошности и потери прочности.

Теплопроводность - способность материала проводить через свою толщину тепловой поток, который возникает из-за разности температур на поверхностях, ограничивающих материал.

Проводить тепло способны все материалы, но теплопроводность при этом у них различна. Она зависит от вида материала, пористости, плотности, влажности, средней температуры, при которой происходит передача тепла.

Так как большинство материалов имеют поры и пустоты, а теплопроводность воздуха меньше, чем у твердых материалов, то увеличение пористости приводит к снижению теплопроводности.

Термическое сопротивление - величина, обратная сопротивлению.

Благодаря низкой теплопроводности воздуха, он оказывает огромное термическое сопротивление прохождению потока тепла.

На теплопроводность материала влияет характер пор. Теплопроводность материала (при одинаковой пористости) будет меньше при мелких порах, потому как в крупных порах произойдет передача теплоты конвекцией.

При наличии крупных сообщающихся пор теплопроводность увеличивается. С замкнутым порами материалы менее теплопроводны, чем с сообщающимися порами.

Теплопроводность зависит от структуры материала. У материала со слоистыми и волокнистым строением теплопроводность вдоль и поперек различна (пример - древесина).

Более теплопроводными будут влажные материалы, потому как теплопроводность воды больше в 25 раз, чем у воздуха.

Когда повышается температура, теплопроводность возрастает у большинства материалов, а у некоторых уменьшается (металлы).

Теплоемкость - способность материала поглощать при нагревании и отдавать при охлаждении определенное количество теплоты.

При расчетах теплоустойчивости наружных стен отапливаемых зданий, расчете подогревов растворов, бетонов и т.д. учитывают теплоемкость.

Огнестойкость - способность материала противостоять воздействию огня, высоких температур и воды в условиях пожара.

Огонь вызывает у материалов химическое разложение (доломит, известняк, органические материалы), плавление (пластмассы, алюминий), деформации и разрушения (гранит, сталь).

По степени огнестойкости строительные материалы делятся на несгораемые, трудносгораемые, сгораемые.

В условиях пожара несгрораемы материалы не обугливаются и не тлеют. К ним относятся: керамический кирпич, бетон, черепица, природные и асбестоцементные каменные материалы.

Под действием огня трудносгораемые материалы с трудом воспламеняются, обугливаются и тлеют, но лишь при наличии источника огня. К ним относят: с теклопластики, асфальтовый бетон, оштукатуренную древесину.

Сгораемые материалы при пожаре воспламеняются, горят и тлеют, после удаления источника огня продолжают гореть. К ним относят: рубероид, древесину, войлок, пластмассы, битумы, обои, полимерные материалы.

С целью повышения огнестойкости материалов, их обрабатывают и пропитывают специальными огнезащитными составами - антипиренами. Под воздействием огня эти составы выделяют газы, препятствующие горению или образуют поверхность, замедляющую нагрев материала.

Огнеупорность - способность материала выдерживать продолжительное воздействие высоких температур без деформаций и размягчений.

По степени огнеупорности материалы подразделяют на: огнеупорные, тугоплавкие, легкоплавкие.

Огнеупорные материалы способны выдержать длительное воздействие температуры свыше 1580°С. Они применяются для футеровки внутренних поверхностей промышленных печей (магнезитовые и графитовые материалы, шамотный кирпич).

Тугоплавкие материалы могут выдерживать без размягчения температуру 1350...1580°С (кирпич гжельский для кладки печей).

Легкоплавкие материалы размягчаются при температуре ниже 1350°С (пустотелый и полнотелый керамический кирпич).