
- •С. А. Куценко основы токсикологии
- •Глава 1.2. Токсикант (яд)
- •Глава 2.2. Механизмы цитотоксичности
- •Глава 2.3. Действие токсикантов на биологические механизмы регуляции клеточной активности
- •Раздел 3. Токсикометрия
- •Глава 3.1. Зависимость "доза-эффект" в токсикологии.
- •Глава 3.2. Эпидемиологические методы исследования в токсикологии
- •Глава 3.3. Оценка риска действия токсиканта
- •Раздел 4. Токсикокинетика
- •Глава 4.1. Общие закономерности токсикокинетики
- •Глава 4.2. Резорбция
- •Глава 4.3. Распределение
- •Глава 4.4. Метаболизм ксенобиотиков
- •Глава 4.5. Выведение ксенобиотиков из организма
- •Глава 4.6. Количественные характеристики токсикокинетики
- •Раздел 5. Факторы, влияющие на токсичность
- •Глава 5.1. Особенности биосистем и их влияние на чувствительность к ксенобиотикам
- •Глава 5.2. Влияние условий проведения эксперимента и качества среды обитания на токсичность
- •Глава 5.3. Явления, наблюдаемые при длительном воздействии токсиканта
- •Глава 5.4. Коергизм ксенобиотиков
- •5.5. Антидоты (противоядия)
- •Раздел 6. Специальные виды токсического действия
- •Глава 6.1. Иммунотоксичность
- •Глава 6.2. Химический мутагенез
- •Глава 6.3. Химический канцерогенез
- •Глава 6.4.Токсическое влияние на репродуктивную функцию. Тератогенез
- •Раздел 7. Избирательная токсичность
- •Глава 7.1. Раздражающее действие
- •Глава 7.2. Дерматотоксичность
- •Глава 7.3. Пульмонотоксичность
- •Глава 7.4. Гематотоксичность
- •Глава 7.5. Нейротоксичность
- •Глава 7.6. Гепатотоксичность
- •Глава 7.7. Нефротоксичность
- •3.1. Механизмы действия
- •Раздел 8. Экотоксикология
- •Глава 8.1. Основы экотоксикологии
- •5.2.1. Кадмий
- •Глава 8.2. Синдром неспецифической повышенной химической восприимчивости
- •Раздел 1. Введение
- •Глава 1.1. Предмет и задачи токсикологии
- •1. Предмет изучения
- •1.1. Попытка определения
- •1.2. Токсичность
- •1.3. Токсический процесс
- •1.3.1. Формы проявления токсического процесса на разных уровнях организации жизни
- •1.3.2. Основные характеристики токсического процесса, выявляемого на уровне целостного организма
- •1.3.2.2. Другие формы токсического процесса
- •2. Цель и задачи токсикологии
- •3. Структура токсикологии
- •Глава 1.3. Токсикант (яд)
- •1. Общая характеристика токсикантов
- •1. По происхождению
- •1.1.1.1. Бактериальные токсины
- •1.2. Синтетические токсиканты
- •2. По способу использования человеком
- •2.2. Пестициды
- •3. По условиям воздействия
- •2. Краткая характеристика отдельных групп токсикантов
- •2.1. Токсиканты биологического происхождения
- •2.1.1. Бактериальные токсины
- •2.1.2. Микотоксины
- •2.1.3. Токсины высших растений
- •2.1.4. Токсины животных (зоотоксины)
- •2.2. Неорганические соединения естественного происхождения
- •2.3. Органические соединения естественного происхождения
- •2.4. Синтетические токсиканты
- •2.4.1. Пестициды
- •2.4.2. Органические растворители
- •2.4.3. Лекарства, пищевые добавки, косметика
- •2.4.4. Боевые отравляющие вещества (бов)
- •Глава 1.2. Биосистемы - мишени действия токсикантов
- •2. Термодинамика биосистем. Термодинамические аспекты токсичности
- •4. Степени свободы токсического воздействия
- •Глава 1.4. Свойства токсиканта, определяющие токсичность
- •1. Размеры молекулы
- •2. Геометрия молекулы токсиканта
- •3. Физико-химические свойства вещества
- •4. Стабильность в среде
- •5. Химические свойства.
- •Раздел 2. Токсикодинамика
- •Глава 2.1. Механизмы токсического действия
- •1. Определение понятия "рецептор" в токсикологии
- •2. Действие токсиканта на элементы межклеточного пространства
- •3. Действие токсикантов на структурные элементы клеток
- •3.1. Взаимодействие токсикантов с белками.
- •3.1.1. Энзимы
- •3.1.1.1. Усиление каталитической активности
- •3.1.1.2. Угнетение каталитической активности
- •3.1.1.3. Биологические последствия действия токсикантов на энзимы
- •3.2. Взаимодействие токсикантов с нуклеиновыми кислотами.
- •3.3. Взаимодействие токсикантов с липидами
- •3.4.1. Селективные рецепторы клеточных мембран
- •5. Понятие полирецепторного профиля связывания токсиканта
- •6. Радиолигандные методы изучения процесса взаимодействия токсиканта с рецепторами
- •Глава 2.2. Механизмы цитотоксичности
- •1. Нарушение процессов биоэнергетики
- •1.1. Системы энергообеспечения клетки
- •1.2. Механизмы токсического повреждения систем энергообеспечения клетки
- •2. Нарушение гомеостаза внутриклеточного кальция
- •2.1. Повреждение цитоскелета
- •2.2. Активация фосфолипаз
- •2.3. Активация протеаз
- •2.4. Активация эндонуклеаз
- •3. Активация свободно-радикальных процессов в клетке
- •3.1. Сущность явления
- •3.2. Механизмы клеточной антирадикальной защиты
- •3.4. Биологические последствия активации свободно-радикального процесса в клетке
- •4. Повреждение мембранных структур
- •4.1. Основные свойства и функции биологических мембран
- •4.2. Действие токсикантов на мембраны
- •4.2.1. Прямое действие на мембраны
- •4.2.2. Активация перекисного окисления липидов
- •4.2.3. Активация фосфолипаз
- •4.3. Биологические последствия действия токсикантов на мембраны
- •5. Повреждение процессов синтеза белка и клеточного деления
- •5.1. Синтез днк. Репликация
- •5.2. Синтез рнк. Транскрипция
- •5.3. Синтез белков. Трансляция
- •5.4. Биологические последствия действия токсикантов на нуклеиновый обмен и синтез белка
- •2. Механизмы гуморальной регуляции
- •Раздел 3. Токсикометрия
- •Глава 3.1. Зависимость "доза-эффект" в токсикологии
- •1. Общие замечания
- •2.1. Предварительные замечания
- •2.2. Основные понятия
- •2.4.1. Оккупационные теории.
- •2.4.2. Теория "скорости взаимодействия"
- •2.4.3. Теории конформационных изменений рецептора
- •3.2.2. Относительная активность
- •3.3. Биологическая изменчивость
- •3.4. Совместное действие нескольких токсикантов на биообъект
- •Глава 3.2. Эпидемиологические методы исследования в токсикологии
- •1. Основные категории и типы эпидемиологических исследований
- •2.1 Классификация показателей
- •2.1.1. Показатели состояния обследуемой популяции
- •3. Замысел эпидемиологического исследования
- •3.1. Метод регистрации серии событий
- •3.3. Метод когортных исследований
- •3.4. Метод "поперечного среза"
- •3.5. Другие методы
- •4. Интерпретация результатов (принципы формирования выводов)
- •Глава 3.3. Оценка риска действия токсиканта
- •1. Исторические аспекты
- •2. Что такое оценка риска?
- •3.1. Идентификация опасности
- •3.2. Оценка воздействия
- •3.3. Оценка токсичности
- •3.4. Характеристика риска
- •4. Недостатки методологии оценки риска
- •4.1. Экстраполяция данных
- •4.2. Неадекватные исследования
- •4.3. Различия в механизмах токсического действия
- •4.4. Популяционные различия
- •4.5. Неопределенность при оценке воздействия
- •4.6. Неопределенность, связанная с комбинированным действием токсикантов
- •Раздел 4. Токсикокинетика
- •Глава 4.1. Общие закономерности
- •1. Растворение и конвекция
- •2. Диффузия в физиологической среде
- •2.3. Диффузия через поры
- •2.4. Межклеточный транспорт химических веществ
- •2.5. Диффузия растворенных газов
- •3. Осмос
- •4. Фильтрация
- •4.1. Капиллярная фильтрация
- •5. Специфический транспорт веществ через биологические барьеры
- •5.1. Активный транспорт
- •5.2. Каталитическая (облегченная) диффузия
- •5.3. Транспорт веществ путем образования мембранных везикул
- •Глава 4.2. Резорбция ксенобиотиков
- •1. Факторы, влияющие на резорбцию
- •2. Резорбция через кожу
- •2.1. Способы резорбции
- •2.2 Факторы, влияющие на скорость резорбции
- •2.2.1. Площадь и область резорбции
- •2.2.2. Кровоснабжение
- •2.2.3. Свойства действующих веществ
- •2.3.4. Экзогенные факторы
- •3. Резорбция через слизистые оболочки
- •3.1. Резорбция в ротовой полости
- •3.2. Резорбция в желудке
- •3.2.1. Растворимость в жирах и рН
- •3.2.2. Растворимость в воде
- •3.2.3. Содержимое желудка
- •3.3. Резорбция в кишечнике
- •3.3.1. Значение рКа
- •3.3.2. Коэффициент распределения в системе масло/вода
- •3.3.3. Размеры молекулы
- •3.3.4. Заряд молекулы
- •3.3.6. Кровоснабжение
- •3.3.7. Содержимое кишечника
- •3.4. Резорбция в легких
- •3.4.1. Резорбция газов
- •3.4.1.1. Вентиляция легких
- •3.4.1.2. Поступление в кровь
- •3.4.1.3. Переход газов в ткани
- •3.4.2. Резорбция аэрозолей
- •3.5. Резорбция слизистыми глаз
- •4. Резорбция из тканей
- •4.1. Свойства тканей
- •4.1.1. Стенка капилляра
- •4.1.2. Капиллярная и лимфатическая система
- •4.1.3. Кровоснабжение
- •4.2. Свойства токсиканта
- •5. Квота резорбции
- •Глава 4.3. Распределение ксенобиотиков в организме
- •1. Принципы распределения
- •1.3. Проникновение через клеточную мембрану
- •1.4. Относительная растворимость в системе масло/вода
- •1.5. Распределение в соответствии с химическим сродством
- •2. Объем распределения
- •3. Связывание с белками крови
- •3.1. Белки плазмы крови
- •3.3. Конкурентные отношения при взаимодействии ксенобиотиков с белками
- •3.4. Биологические последствия связывания токсиканта белками плазмы крови
- •4. Связывание клетками крови
- •5. Проникновение ксенобиотиков в цнс
- •5.1. Гематоэнцефалический и гематоликворный барьеры.
- •5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров
- •6. Гематоофтальмический барьер
- •7. Проникновение ксенобиотиков в печень
- •7.1. Сосудистое русло
- •7.2. Активный транспорт
- •7.3. Мембранная диффузия
- •7.4. Фагоцитоз
- •8. Поступление ксенобиотиков в экзокринные железы
- •9. Проникновение ксенобиотиков через плаценту
- •9.1. Плацентарный барьер
- •9.2. Характеристика проникновения токсикантов через плаценту и распределение их в тканях плода
- •10. Депонирование
- •10.1. Депонирование вследствие химического сродства и растворимости в липидах
- •10.2. Депонирование вследствие активного захвата ксенобиотика
- •Глава 4.4. Метаболизм ксенобиотиков
- •1. Концепция l и ll фазы метаболизма ксенобиотиков
- •3. Первая фаза метаболизма
- •4. Флавопротеинредуктазы;
- •5. Эпоксидгидролазы;
- •3.1. Окислительно-восстановительные превращения
- •3.1.1. Оксидазы смешанной функции
- •3.1.2. Простогландинсинтетаза-гидропероксидаза и другие пероксидазы
- •3.1.3. Дегидрогеназы
- •3.1.4. Флавопротеинредуктазы
- •3.1.5 Восстановление
- •3.2. Гидролитические превращения
- •3.2.1. Расщепление эфиров
- •3.2.2. Расщепление амидов кислот
- •3.2.3. Эпоксидгидролазы
- •3.2.4. Другие гидролазы
- •4. Вторая фаза метаболизма. Конъюгация
- •4.1. Ацетилирование
- •4.2. Другие реакции ацилирования
- •4.3. Конъюгация с глюкуроновой кислотой
- •4.4. Конъюгация с сульфатом
- •4.5. Конъюгация с глутатионом и цистеином
- •4.6. Метилирование
- •5. Энзимы кишечной флоры
- •6. Факторы, влияющие на метаболизм ксенобиотиков
- •6.1. Генетические факторы
- •6.2. Пол и возраст
- •6.3. Влияние химических веществ
- •6.3.1. Индукция энзимов
- •6.3.1.2. Механизмы индукции
- •6.3.1.3. Влияние индукторов на токсичность ксенобиотиков
- •6.3.2. Угнетение активности энзимов
- •6.3.3. Двухфазный эффект: угнетение и индукция
- •7. Активные метаболиты и их роль в инициации токсического процесса
- •Глава 4.5. Выделение ксенобиотиков из организма (экскреция)
- •1. Выделение через легкие
- •2. Почечная экскреция
- •2.1. Фильтрация
- •2.2. Канальцевая реабсорбция
- •2.3. Канальцевая секреция
- •2.4. Совместное действие механизмов почечной экскреции
- •3. Выделение печенью
- •4. Выделение через кишечник
- •5. Другие пути выведения
- •Глава 4.6. Количественные характеристики токсикокинетики
- •1. Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
- •2. Объем распределения.
- •3. Клиаренс
- •4. Биодоступность
- •5. Соотношение между значениями клиаренса, объема распределения и времени полувыведения вещества
- •6. Компартменты
- •6.1. Однокомпартментная модель
- •6.1.1. Моделирование поведения ксенобиотика при однократном внутривенном введении
- •6.1.2. Моделирование поведения ксенобиотика с параллельными путями выведения
- •6.1.3. Моделирование поведения ксенобиотика полностью резорбирующегося из места введения
- •6.2. Многокомпартментные модели
- •6.3. Нелинейные токсикокинетические процессы
- •6.3.1. Нелинейная однокомпартментная модель распределения с ограниченным характером процесса элиминации
- •7. Физиологические токсикокинетические модели
- •Раздел 5. Факторы, влияющие на токсичность
- •Глава 5.1. Внутри- и межвидовые особенности организмов и их влияние на чувствительность к ксенобиотикам
- •1. Генетически обусловленные особенности реакций организма на действие токсикантов
- •1.1. Межвидовые различия
- •1.1.1. Особенности токсикокинетики
- •1.1.1.1. Резорбция
- •1.1.1.2. Распределение
- •1.1.1.3. Биотрансформация
- •1.1.1.4. Экскреция
- •1.1.2. Особенности токсикодинамики
- •1.1.2.1. Связывание с рецептором
- •1.1.2.1. Эффекторные реакции
- •1.2. Внутривидовые различия
- •1.2.1. Генетические особенности личности
- •2.1. Возрастные различия
- •2.2. Влияние массы тела
- •2.3. Влияние беременности
- •Глава 5.2. Влияние условий проведения эксперимента и качества среды обитания на токсичность
- •1. Питание
- •2. Условия содержания экспериментальных животных
- •3. Содержание в стерильных условиях
- •4. Периодические изменения чувствительности к токсикантам
- •4.1. Циркадные ритмы
- •4.2. Годичные ритмы
- •5. Температура окружающего воздуха
- •Глава 5.3. Явления, наблюдаемые при длительном воздействии токсикантов
- •1. Толерантность
- •1.1. Виды толерантности
- •1. Ослабление резорбции;
- •1.2. Некоторые механизмы толерантности
- •1.2.1. Ослабление резорбции
- •1.2.2. Усиление метаболизма ксенобиотиков
- •1.2.3. Усиление экскреции.
- •1.2.4. Изменение распределения
- •1.2.5. Изменение рецепторов и реактивных систем
- •1.2.6. Индукция веществ-антагонистов
- •1.2.7. Истощение запасов нейромедиаторов
- •1.3. Тахифилаксия
- •1.4. Хроническая форма толерантности
- •1.5. Биологическое значение толерантности
- •2. Химическая зависимость
- •2.1. Психическая зависимость
- •2.2. Физическая зависимость
- •2.3 Механизм химической зависимости
- •3. Привыкание
- •4. Хроническое отравление
- •Глава 5.4. Коергизм ксенобиотиков
- •1. Механизмы коергизма
- •1.1. Взаимодействие в период аппликации
- •1.2. Токсикокинетические механизмы коергизма.
- •1.2.1. Взаимодействие веществ при резорбции
- •1.2.2.1. Модификация связывания белками плазмы крови
- •1.2.2.2. Изменение свойств тканей
- •1.2.2.3. Мобилизация биологически активных веществ
- •1.2.3. Коергизм в процессе биотрансформации
- •1.2.3.1. Угнетение активности энзимов, метаболизирующих ксенобиотики
- •1.2.3.2. Повреждение органов и тканей, метаболизирующих ксенобиотики
- •1.2.3.3. Индукция энзимов, метаболизирующих ксенобиотики
- •1.2.3. Коергизм веществ при их выведении
- •1.2.3.1. Выведение через почки
- •1.2.3.1.1. Канальцевая реабсорбция
- •1.2.3.1.2. Канальцевая секреция
- •1.2.3.2. Печеночная экскреция
- •1.3. Токсикодинамические механизмы коергизма
- •1.3.1. Взаимодействие на уровне рецепторов
- •1.3.1.1. Конкуренция за рецепторы одного типа
- •1.3.1.2. Коергизм при действии ксенобиотиков на разные участки рецепторной молекулы
- •1.3.2. Коергизм на уровне реактивных систем и целостного организма
- •2. Представление данных, получаемых в ходе изучения явления коергизма
- •3. Токсикологическое значение явления коергизма
- •Глава 5.5. Антидоты (противоядия)
- •1. История вопроса.
- •2. Характеристика современных антидотов
- •2.1. Краткая характеристика механизмов антидотного действия
- •2.1.1. Антидоты, связывающие токсикант (химические антагонисты)
- •2.1.1.1. Прямое химическое взаимодействие
- •2.1.1.2. Опосредованная химическая нейтрализация.
- •2.1.2. Биохимический антагонизм
- •2.1.3. Физиологический антагонизм.
- •2.1.4. Противоядия, модифицирующие метаболизм ксенобиотиков.
- •2.2. Применение противоядий
- •3. Разработка новых антидотов.
- •3.1. Оценка эффективности.
- •3.1.1. Опыты in vitro
- •3.1.2. Опыты in vivo.
- •3.2. Создание комплексных антидотных рецептур
- •3.3. Внедрение новых антидотов в практику
- •3.4. Перспективы
- •Глава 6.1. Иммунотоксичность
- •1.1. Иммунокомпетентные клетки
- •1.2. Органы и ткани иммунной системы
- •1.3. Особенности функционирования системы
- •1.4. Иммунокомпетентность
- •2. Действие токсикантов на иммунную систему
- •2.1. Понятие иммунотоксичности
- •2.2. Иммуносупрессия
- •2.2.1. Иммуносупрессия и инфекция
- •2.2.2. Иммуносупрессия и канцерогенез
- •2.3. Гиперчувствителность (аллергия)
- •2.3.1. Характеристика состояния гиперчувствительности
- •2.3.2. Псевдоаллергические реакции
- •2.3.3. Иммуногены и аллергены
- •2.4. Аутоиммунные процессы
- •3. Краткая характеристика токсикантов
- •5. Выявления иммунотоксических эффектов
- •5.1. Оценка иммунологического статуса
- •Глава 6.2. Химический мутагенез
- •1. Точечные мутации
- •1.1. Замещение нуклеотида
- •1.2. Выпадение или включение дополнительного нуклеотида
- •1.3. Репарация днк
- •2. Хромосомные аберрации
- •3. Условия действия мутагенов на клетки
- •4.1. Исследования в опытах на прокариотах. Тест Эймса
- •4.2. Исследования в опытах на клетках млекопитающих
- •4.3. Оценка индукции синтеза днк клетками млекопитающих
- •4.4. Исследование ковалентного связывания токсикантов
- •4.5. Изучение хромосомных аберраций
- •Глава 6.3. Химический канцерогенез
- •1. Краткая характеристика канцерогенов
- •2. Классификации канцерогенов
- •3. Стадии химического канцерогенеза
- •4. Механизмы действия
- •6. Метаболизм и биоактивация канцерогенов
- •7. Краткая характеристика токсикантов
- •7.1. Бензол
- •8. Выявление канцерогенной активности веществ
- •8.1. Экспериментальная оценка
- •8.2. Эпидемиологические исследования
- •9.1. Проблемы оценки риска
- •8.3. Процедуры определения пороговых уровней риска
- •Глава 6.4. Токсические влияния на репродуктивную функцию. Тератогенез
- •1. Краткая характеристика анатомо-физиологических особенностей репродуктивных органов
- •2. Развитие плода
- •3. Особенности действия токсикантов на репродуктивные функции
- •3.1. Тератогенез
- •3.1.1. Закономерности тератогенеза
- •3.1.2. Особенности токсикокинетики тератогенов
- •3.1.3. Механизмы действия тератогенов
- •4. Характеристика некоторых токсикантов, влияющих на репродуктивные функции
- •4.1. Талидомид
- •4.2. Ртуть
- •4.3. Свинец
- •4.4. Кадмий
- •4.5. Полигалогенированные бифенилы (пгб)
- •4.6. Органические растворители
- •4.7. Цитостатики
- •5. Выявление действия токсикантов на репродуктивную функцию.
- •5.1. Экспериментальное изучение
- •5.2. Оценка риска поражения
- •5.3. Эпидемиология токсического действия
- •5.3.1. Анализируемые показатели
- •5.3.2. Методы сбора информации
- •5.3.3. Контроль тератогенеза в популяции
- •Раздел 7. Избирательная токсичность
- •Глава 7.1. Раздражающее действие
- •1. Краткая характеристика химических и физико-химических свойств токсикантов
- •2. Патогенез токсического эффекта
- •3. Основные проявления раздражающего действия
- •4. Экспериментальное выявление раздражающего действия ксенобиотиков
- •Глава 7.2. Дерматотоксичность
- •1. Химические дерматиты
- •1.1. Контактные химические дерматиты
- •1.2. Аллергические дерматиты
- •2. Фотодерматиты
- •3. Токсидермии
- •4. Краткая характеристика некоторых токсикантов
- •4.1. Поражение органическими растворителями
- •4.2. Поражения мышьякорганическими соединениями
- •4.3. Поражение сернистым ипритом
- •4.4. Поражение альдегидами
- •4.5. Поражение эпоксидными смолами
- •4.6. Поражение щелочами
- •4.7. Поражение кислотами
- •4.7.2. Поражение плавиковой кислотой.
- •5. Оценка дерматотоксичности ксенобиотиков в эксперименте
- •Глава 7.3. Пульмонотоксичность
- •1. Краткая характеристика морфологии дыхательной системы
- •1.1. Назофарингиальный отдел
- •1.2. Трахеобронхиальный отдел
- •1.3. Паренхима легких
- •1.4. Циркуляция крови и лимфы в лёгких
- •2. Физиология дыхательной системы
- •2.1. Вентиляция
- •2.1.1. Легочные объемы
- •2.1.2. Рефлексы, влияющие на дыхание
- •2.1.3. Механизмы регуляции тонуса бронхов
- •2.2. Газообмен
- •2.3. Метаболизм ксенобиотиков и биологически активных веществ
- •2.4. Депонирование и клиаренс ксенобиотиков в легких
- •3. Основные формы патологии дыхательной системы химической этиологии
- •3.1. Острые ингаляционные поражения
- •3.1.1. Локализация поражения
- •3.1.1.1. Верхние дыхательные пути
- •3.1.1.2. Глубокие дыхательные пути
- •3.1.1.3. Паренхима легких
- •3.1.1.3.2. Отек легких
- •3.1.2. Острая дыхательная недостаточность
- •3.1.3. Диагностика
- •3.1.4. Оказание помощи
- •3.1.5. Краткая характеристика некоторых пульмонотоксикантов
- •3.1.5.1. Хлор
- •3.1.5.2. Паракват
- •3.1.5.3. Цинк
- •3.2. Хронические патологические процессы химической этиологии
- •3.2.1. Аллергические и гиперреактивные заболевания легких
- •4. Оценка пульмонотоксичности ксенобиотиков в эксперименте
- •5. Выявления пульмонотоксического действия профессиональных и экотоксикантов
- •5.1. Профессиональный анамнез
- •5.2. Биологический мониторинг
- •5.3. Обследование рабочего места
- •Глава 7.4. Гематотоксичность
- •1. Гемопоез
- •2. Нарушение функций гемоглобина
- •2.1. Метгемоглобинообразование
- •2.1.1. Причины метгемоглобинообразования
- •2.1.1.1. Врожденная метгемоглобинемия
- •2.1.1.2. Приобретённая метгемоглобинемия
- •2.1.2. Краткая характеристика некоторых токсикантов
- •2.1.2.1. Анилин
- •2.1.2.2. Дапсон (4,4-диаминодифенилсульфон)
- •2.1.2.3. Нитриты
- •2.1.3. Проявления метгемоглобинемии
- •2.1.4. Лабораторная диагностика
- •2.1.5. Принципы оказания помощи
- •2.2. Образование карбоксигемоглобина
- •3. Изменение числа форменных элементов
- •3.1. Гемолитические анемии
- •3.1.2. Краткая характеристика некоторых токсикантов
- •3.1.2.3. Тринитротолуол
- •3.1.3. Биомониторинг
- •3.2. Аплазия костного мозга
- •3.2.1. Основные проявления интоксикаций
- •3.2.1.1. Панцитопения.
- •3.2.1.2. Агранулоцитоз
- •3.2.1.3. Тромбоцитопения
- •3.3. Лейкемии
- •3.3.1. Распространённость
- •3.3.2. Диагноз
- •3.3.3. Профессиональные воздействия и лейкемии
- •3.4. Характеристика наиболее известных токсикантов, вызывающих патологию крови
- •3.4.1. Бензол
- •3.4.2. Свинец
- •3.4.3. Мышьяк
- •3.4.4. Этиленоксид
- •3.4.5. Эфиры гликолей
- •3.4.6. Производные феноксиуксусной кислоты
- •4. Мониторинг состояния системы крови лиц, работающих в условиях опасных производств
- •Глава 7.5. Нейротоксичность
- •1. Структурно-функциональная организация нервной системы
- •1.1. Нейроны
- •1.3. Глиальные клетки
- •1.4. Цереброспинальная жидкость.
- •1.5. Гематоэнцефалический барьер.
- •1.6. Энергетический обмен
- •1.7. Мозговой кровоток
- •1.8. Внутричерепное давление
- •3. Характеристика нейротоксикантов и нейротоксических процессов.
- •3.1. Нейротоксиканты
- •3.2. Нейротоксические процессы
- •3.2.1. Механизмы действия нейротоксикантов
- •4. Проявления нейротоксических процессов
- •4.1. Острые нейротоксические процессы
- •4.1.1. Судорожный синдром. Конвульсанты
- •4.1.1.1. Конвульсанты, активирующие возбуждающие процессы в цнс
- •4.1.1.1.1. Вещества, действующие на возбудимые мембраны и нарушающие механизмы ионного транспорта
- •4.1.1.1.2. Вещества, активирующие холинэргические структуры мозга
- •4.1.1.1.3. Вещества, активирующие глютаматэргические структуры мозга
- •4.1.1.2. Конвульсанты, блокирующие тормозные процессы в цнс
- •4.1.1.2.1.1. Антагонисты гамк
- •Глава 7.6. Гепатотоксичность
- •Глава 7.7. Нефротоксичность
- •2.1. Механизмы действия
- •3.1.1. Свинец
- •3.1.2. Кадмий
- •3.1.3. Ртуть
- •3.1.4. Мышьяк
- •Раздел 8. Экотоксикология
- •6. Взрыв численности популяции вследствие уничтожения вида-конкурента.
- •5.2.1. Кадмий
- •Глава 8.2. Синдром неспецифической повышенной химической восприимчивости
4. Стабильность в среде
Биологическое действие токсикант может оказывать лишь при условии его достаточной стабильности в окружающей среде и средах организма. Если вещество нестабильно, то развивающийся эффект связан с воздействием продуктов его превращения. Активные в химическом отношении вещества редко становятся непосредственными причинами общетоксического действия. Эти вещества, либо уже в окружающей среде вступают в химические реакции, превращаясь в более инертные, но относительно стабильные соединения, либо реагируют с покровными тканями организма (кожей, слизистыми), растрачивая свой химический потенциал на их альтерацию (местное действие).
После попадания в организм большая часть ксенобиотиков с различной скоростью подвергается биотрансформации. Так, при поступлении в желудочно-кишечный тракт пептиды и белковые молекулы (например, тетанотоксин) быстро инактивируются пептидазами и протеиназами. В процессе разрушения токсикантов различного строения участвует и кишечная флора. Метаболизм ксенобиотиков завершается в крови и тканях после их резорбции. Поэтому, порой, очень трудно решить, какое именно вещество является непосредственно действующим началом развивающегося токсического процесса.
5. Химические свойства.
Взаимодействие токсиканта с молекулами-мишенями организма подчиняется тем же закономерностям, что и любая другая химическая реакция, протекающая ex vivo и, следовательно, во многом зависит от его химических свойств.
Большинство высоко токсичных соединений - инертные в химическом отношении молекулы. Сила межмолекулярного взаимодействия между токсикантом и биологической молекулой-мишенью действует, как правило, локально; образующаяся связь способна к диссоциации. Высвободившаяся из связи с токсикантом биомишень восстанавливает исходные свойства. В подобных случаях достаточно элиминировать не связавшуюся часть токсиканта из организма для того, чтобы сдвинуть химическое равновесие в сторону разрушения комплекса токсикант-мишень, и, тем самым, устранить действие яда.
Иногда между токсикантом и молекулой-мишенью образуются прочные связи. В этих случаях разрушить комплекс токсикант-биомишень порой возможно только с помощью других средств, образующих с ядом еще более прочные комплексы. В частности, для восстановления активности ацетилхолинэстеразы, ингибированной фосфорорганическими соединениями (ФОС), применяют вещества из группы оксимов, вступающие во взаимодействие с токсикантами и вызывающие тем самым дефосфорилировани активного центра энзима.
5.1. Типы химических связей, образующихся между токсикантами и молекулами-мишенями организма
При взаимодействии токсиканта с биологическими структурами-мишенями могут образовываться различные типы химических связей (таблица 3).
Таблица 3. различные типы связей, формирующихся между токсикантами и молекулами-мишенями организма
Вид связи |
Пример |
Энергия связи (кдж/мол) |
Ионная |
|
20 |
Ковалентная |
|
40 - 600 |
Донорно-акцепторная |
|
4 - 20 |
Ион-дипольная |
|
8 - 20 |
Диполь-дипольная |
|
4 - 12 |
Водородная |
|
4 - 28 |
Ван-дер-Ваальса |
|
1 - 4 |
Гидрофобная |
|
1 - 6 |
Ионная связь. В водных растворах многие вещества диссоциируют с образованием ионов. Между положительно и отрицательно заряженными ионами токсиканта и эндогенными ионами-мишенями начинают действовать силы электростатического притяжения. Вследствие притяжения возникает химическая связь. Связь такого типа называется электровалентной или ионной. Образованные катионами и анионами вещества не несут электрического заряда.
А-
+ В+
АВ
Токсические последствия подобного взаимодействия в организме развиваются в случае образования не растворимого в воде комплекса иона-токсиканта с биологически значимым ионом-мишенью. Например, при интоксикации фторидами, ион фтора может вступать во взаимодействие с ионом кальция. В итоге образуется нерастворимый фторид кальция. Развивающаяся гипокальциемия имеет определенное значение для развития и проявления интоксикации. Аналогичным образом действует щавелевая кислота, образующаяся в организме в процессе метаболизма этиленгликоля при интоксикации последним:
Поскольку степень диссоциации многих веществ в водном растворе существенно зависит от рН среды, количество образовавшихся за счет ионной связи комплексов токсикант-мишень также зависит от этого показателя.
Ковалентная связь. Для образования ковалентной связи, взаимодействующие атомы должны иметь на внешней электронной орбите неспаренные электроны. Эти электроны занимают одну и ту же орбиталь, а образовавшаяся общая пара формирует силу притяжения между атомами. В результате образования такой общей пары электронов каждый из взаимодействующих атомов приобретает "завершенный набор" электронов и образовавшееся соединение становится стабильным. Энергия ковалентной связи велика и составляет 200 - 400 кдж/мол
Высокая стабильность связи этого типа означает практически необратимый характер присоединения токсиканта к структуре-мишени. Примерами веществ, образующих с биомолекулами подобную связь, являются ФОС (взаимодействуют с серином, входящим в структуру активного центра ацетилхолинэстеразы), иприты (взаимодействуют с пуриновыми основаниями нуклеиеновых кислот), а также целый ряд других распространённых токсикантов (метилбромид, метилхлорид, этиленоксид и др.). Вследствие прочности образовавшейся связи, разрушение комплекса токсикант-биомишень возможно только с помощью специальных средств (например, реактиваторов ХЭ при интоксикации ФОС). Восполнение содержания поврежденной токсикантом биологической структуры возможно также за счет синтеза её de novo. Так, восстановление активности АХЭ в тканях лабораторных животных отравленных зоманом проходит со скоростью синтеза энзима нервными клетками.
Координационная связь - это ковалентная связь, в которой обобществленною пару электронов предоставляет только один из участвующих в связи атомов. Один из атомов является донором, а другой акцептором электронной пары, поэтому эту связь называют также донорно-акцепторной. Акцепторами часто являются катионы металлов, или атомы переходных металлов (Zn, Cu, Fe), входящих в состав молекулы. Таким образом, в частности, оксид углерода взаимодействует с железом гемоглобина, с образование карбоксигемоглобина.
Водородная связь. Ковалентная связь между атомом водорода и электроотрицательным атомом (кислород, азот, сера и т.д.) более или менее поляризована
Вследствие этого атом водорода приобретает незначительный положительный заряд. Если в близи такого атома находится молекула или группа, содержащая анион или электроотрицательный атом, между ними образуется слабая связь, называемая водородной.
Водородная связь может образовываться как между молекулами, так и между атомами внутри молекул. Энергия связи не велика и в водном растворе составляет около 20 кдж/мол. Её прочность во многом зависит от строения взаимодействующих веществ, в частности, от степени электроотрицательности атомов, связанных с водородом. Электроотрицательность атомов возрастает в ряду:
Н = P < C = S = I < Br < Cl = N < O < F
2,1 2,1 2,5 2,5 2,5 2,8 3,0 3,0 3,4 4,0
Водородные связи имеют очень большое значение для поддержания пространственной структуры белков, нуклеиновых кислот и других высокомолекулярных соединений. Вещества, способные разрушать водородную связь, могут нарушать пространственную структуру макромолекул (явление интерколации: встраивание молекул акридина, этидиумбромида между плоскостями, образуемыми витками спирали молекулы ДНК).
В состав молекул токсикантов также входят группы, способные участвовать в образовании водородных связей. Если эти группы (Х-Н) являются структурными элементами "активного" радикала токсиканта, то они участвуют в образовании сложной связи вещества с молекулой-мишенью. Поскольку водородные связи являются по сути электростатическими, их сила ослабевает в присутствии веществ, обладающих свойствами диэлектриков ("неэлектролитов").
Связи Ван-дер-Ваальса. Форма электронного облака молекул квазистабильна, то есть не изменяется до тех пор, пока на неё не действуют внешние силы. Под влиянием электромагнитных полей электронные облака молекул деформируются. При этом безразлично вызвано ли появление деформируящих сил воздействием внешних полей или поле сформировано близлежащими ионами, диполями, аполярными молекулами. Степень деформированности электронного облака зависит от энергетических характеристик воздействующих полей и поляризуемости самой молекулы. Способность электронного облака к деформации (поляризуемость) зависит от размеров молекулы. У больших молекул она больше, чем у малых, поскольку сместить электроны, находящиеся на значительном удалении от ядра атома, легче.
Деформирующее воздействие полей превращает неполярные молекулы в диполи, так как центры максимальной плотности положительного и отрицательного зарядов молекулы несколько разъединяются в пространстве. Сформировавшийся диполь называют индуцированным или временным, поскольку он перестает существовать сразу после прекращения действия деформирующих сил. Две близлежащие неполярные молекулы могут взаимно индуцировать образование временных диполей и, таким образом взаимодействовать друг с другом. Силы взаимодействия, формирующиеся между временными диполями, называются силами Лондона √ Ван-дер-Ваальса. Энергия образующейся связи мала, однако она существенно возрастает при увеличении числа участков контакта между взаимодействующими молекулами. Со стороны токсиканта это могут быть ароматические, гетероциклические, алкильные радикалы; со стороны рецептора - неполярные участки молекул аминокислот (лейцин, валин, аланин, пролин и др.). Вклад каждой -СН2- группы алкильной цепи во взаимодействие оценивается в 2 - 4 кдж/мол. При тесном контакте больших неполярных молекул энергия связи может достичь очень больших величин. Поэтому при образовании комплекса токсикант-биомишень силы Ван-дер-Ваальса могут обеспечивать очень прочную фиксацию ксенобиотика. Действующая сила, ответственная за формирование связи, обратно пропорциональна седьмой степени расстояния между взаимодействующими молекулами. Поэтому она не может обеспечить притяжение молекул токсиканта, свободно циркулирующих в биосредах, к рецептору. В этом процессе первостепенную роль играют силы электростатического взаимодействия. Однако после того как контакт между токсикантом и рецептором осуществился силы Ван-дер-Ваальса обеспечивают его ориентацию и плотную фиксацию.
Гидрофобное взаимодействие. Гидрофобные связи формируются в водной среде, когда молекулы взаимодействующих веществ контактируют друг с другом неполярными (гидрофобными) участками. В отличии от взаимодействия Ван-дер-Ваальса и донорно-акцепторного взаимодействия, которые также формируются при взаимодействии неполярных групп, образование гидрофобных связей обусловлено свойствами воды, без участия которой взаимодействие происходить не может. В соответствии с теорией, молекулы воды связаны друг с другом водородными связями, образуя трехмерную структуру (кластер), напоминающую структуру льда. На границе поверхности, разделяющей неполярную молекулу и молекулы воды, образование такой структуры затрудняется. При контакте двух неполярных молекул, растворенных в воде, общая площадь поверхности, разделяющей воду и эти молекулы уменьшается. Вследствие этого, мобилизуется часть молекул воды, организованных в кластер. В противоположность всем другим химическим связям и взаимодействиям гидрофобная связь, таким образом, обусловлена преобразованием растворителя (воды), а не растворенных взаимодействующих веществ. Движущей силой образования связи является рост энтропии целостной системы растворитель - растворенные молекулы. Структурная организация гидрофобных, взаимодействующих молекул возрастает (уменьшение энтропии), но при этом существенно дезорганизуется (энтропия возрастает) структура растворителя (воды).
Гидрофобные связи имеют большое значение при взаимодействии неполярных молекул ксенобиотиков с клеточными и внутриклеточными мембранами, для образования их комплексов с белками, при этом возможно нарушение конформации макромолекул.
В процессе взаимодействия низкомолекулярного вещества с биомишенью практически всегда формируется несколько типов связей (рисунок 3), поскольку молекула токсиканта, как правило, включает полярный (иногда даже ионизированный), и неполярный фрагменты.
Рисунок 3. Этапы взаимодействия молекулы токсиканта с биомишенью
Ионные связи, за счет которых осуществляется притяжение молекулы к биомишени, мало специфичны (аналогично ион-дипольному и диполь-дипольному взаимодействию). Взаимодействие между неполярными группами также неспецифично. Однако, если в структуре мишени (например, рецепторе для эндогенных биорегуляторов) полярные и неполярные группы пространственно организованы, между этими участками и особыми участками молекулы токсиканта образуются специфичные связи, обусловленные пространственной организацией молекулы токсиканта. Такое взаимодействие можно сравнить с ориентацией намагниченых стрелок в магнитном поле. После ориентации молекулы с помощью ионного (диполь-дипольного) взаимодействия между ней и рецептором формируется тесный контакт, и образуются связи за счет водородных сил и сил Ван-дер-Ваальса. Образующийся комплекс тем более прочен, чем более комплементарна молекула токсиканта рецептору.