Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции (1курс,2сем, ФНП).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.72 Mб
Скачать

3. Дивергенция, её физический смысл и свойства. Формула Остроградского-Гаусса

Пусть векторное поле таково, что существуют частные производные в точке

Определение 5. Дивергенцией поля в точке назывется скалярная величина Если то точка называется источником, а если то называется стоком.

Это определение дивергенции дано в декартовой системе координат. Инвариантное определение будет дано позже. Дивергенция обладает следующими свойствами:

1 (Линейность).

2. Если дифференцируемое в точке скалярное поле, а дифференцируемое в той же точке векторное поле, то в указанной точке имеет место равенство

.

Доказательства этих свойств очевидны и мы рекомендуем провести их самостоятельно. Приводимая ниже формула Остроградского-Гаусса позволяет свести поверхностный интеграл второго рода (поток) к тройному интегралу. Введём сначала следующее понятие.

Определение 6. Говорят, что область односвязна, если любой замкнутый контур можно стянуть в точку, не выходя за пределы области

Например, шар – односвязная область, а шаровое кольцо – нет.

Теорема Остроградского-Гаусса. Пусть замкнутая ограниченная односвязная область и её граница ( в этом случае замкнутая поверхность). Пусть, кроме того, векторное поле непрерывно дифференцируемо в а граница кусочно гладка. Тогда имеет место равенство

Доказательство проведем для случая, когда тело можно одновременно представить в следующих видах

г де замкнутые ограниченные квадрируемые области, а все участвующие здесь функции непрерывны в областях соответственно. Введем векторные поля Тогда исходное векторное поле запишется в виде и значит,

Подсчитаем каждый из этих потоков. Начнем с потока

Нормаль на поверхности имеет вид так как угол острый,

так как угол тупой.

Следовательно,

Точно так же находим, что

поэтому

Теорема доказана.

Пример 2 (Кузнецов Л.А. Типовые расчеты). Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

Решение. Воспользуемся формулой Остроградского-Гаусса:

Так как то

Т ело ограничено сверху поверхностью эллиптического параболоида, а снизу – поверхностью конуса. Пересечение этих поверхностей находится из системы уравнений

т.е. пересечение является окружностью радиуса 2. Перейдем к цилиндрической системе координат: Будем иметь

Лекция 7-8. Инвариантное определение дивергенции и её физический смысл. Соленои-

дальное поле. Ориентируемые кривые. Криволинейные интегралы первого и второго рода, их свойства и вычисление. Циркуляция векторного поля. Ротор. Формулы Грина и Стокса. Потенциальное поле и его свойства

Данное нами на предыдущей лекции определение дивергенции зависело от системы координат. Перейдем к описанию инвариантного определения дивергенции.