
- •Квантовая физика, ионизирующее излучение Лазеры и их применение в медицине
- •Фотобиологические процессы. Понятия о фотобиологии и фотомедицине
- •Ядерный магнитный резонанс. Ямр-интроскопия (магнито-резонансная томография)
- •Физические основы применения рентгеновского излучения в медицине
- •Дозиметрические приборы
- •Защита от ионизирующего излучения
Ядерный магнитный резонанс. Ямр-интроскопия (магнито-резонансная томография)
Избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном магнитном поле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом.
Для химических соединений, в которых наблюдается ЯМР ядер, занимающих химически эквивалентные места в молекуле, наблюдается одиночная линия. Соединения более сложного строения дают спектры из многих линий.
По химическому сдвигу, числу и положению спектральных линий можно установить структуру молекул.
Химики и биохимики широко.используют метод ЯМР для исследования структуры от простейших молекул неорганических веществ до сложнейших молекул живых объектов, а также при решении многих задач, связанных с протеканием химических реакций, изучением структур исходных веществ и получающихся в результате реакций продуктов. Одним из преимуществ этого анализа является то, что он не разрушает объектов исследования, как это происходит, например, при химическом анализе.
Очень интересные возможности для медицины может дать определение параметров спектра ЯМР во многих точках образца. Постепенно, послойно проходя весь образец (сканируя), можно получить полное представление о пространственном распределении молекул, содержащих, например, атомы водорода или фосфора (при магнитном резонансе от протонов или ядер фосфора соответственно).
Все это осуществляется без разрушения образца, и поэтому можно проводить исследование на живых объектах. Такой метод называют ЯМР-интроскопией (об интроскопии см. § 19.8) или магнито-резонансной томографией (МРТ). Он позволяет различать кости, сосуды, нормальные ткани и ткани со злокачественной патологией. ЯМР-интроскопия позволяет различать изображение мягких тканей, например, отличает изображение серого вещества мозга от белого, опухолевых клеток от здоровых, при этом минимальные размеры патологических «включений» могут составлять доли миллиметра. Можно ожидать, что ЯМР-интроскопия станет эффективным методом диагностики заболеваний, которые связаны с изменением состояний органов и тканей.
Частота электромагнитных волн, вызывающих переходы между энергетическими состояниями при ЭПР и ЯМР, соответствует радиодиапазону. Поэтому оба этих явления относятся к радиоспектроскопии.
Физические основы применения рентгеновского излучения в медицине
Одно из наиболее важных медицинских применений рентгеновского излучения — просвечивание внутренних органов с диагностической целью (рентгенодиагностика).
Для диагностики используют фотоны с энергией порядка 60— 120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона, в чем проявляется большая проникающая способность жесткого излучения, и пропорционально третьей степени атомного номера вещества-поглотителя:
Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления цтк кости Са3(РО4)2 и цтв мягкой ткани или воды Н2О.
Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.
Рентгенодиагностику используют в двух вариантах: рентгеноскопия — изображение рассматривают на рентгенолюминесци-рующем экране, рентгенография — изображение фиксируется на фотопленке.
Если исследуемый орган и окружающие ткани примерно одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария, можно видеть их теневое изображение.
Яркость изображения на экране и время экспозиции на фотопленке зависят от интенсивности рентгеновского излучения. Если его используют для диагностики, то интенсивность не может быть сделана большой, чтобы не вызвать нежелательных биологических последствий. Поэтому имеется ряд технических приспособлений, улучшающих изображение при малых интенсивностях рентгеновского излучения. При массовом обследовании населения широко используется вариант рентгенографии — флюорография, при которой на чувствительной малоформатной пленке фиксируется изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличителе.
Интересным и перспективным вариантом рентгенографии является метод, называемый рентгеновской томографией, и его «машинный вариант» — компьютерная томография.