
- •3. Измерители тормозных качеств автомобиля
- •4. Касательная сила тяги; двойственный характер силы тяги
- •6. Кинематика поворота колесного трактора
- •7. Мощностная характеристика автомобиля
- •8. Мощностной баланс трактора.
- •9. Общая динамика гусеничного трактора
- •Тяговый баланс гусеничного трактора
- •Коэффициент качения гусеничных тракторов в зависимости от дорожных условий.
- •10. Общий и тяговый кпд трактора.
- •11. Определение передаточных чисел трансмиссии автомобиля
- •12. Особенности динамики полноприводного автомобиля
- •13. Поперечная устойчивость тракторов и автомобилей
- •14. Потенциальная тяговая характеристика трактора
- •15. Силы сопротивления движению трактора
- •16. Стабилизация управляемых колес поперечным наклоном шкворней
- •17. Торможение автомобиля двигателем
- •18. Тормозная сила и уравнение движения автомобиля при торможении
- •19. Устойчивость системы «автомобиль – двигатель»
- •20. Характеристика поворота гусеничного трактора
- •21. Основные эксплуатационные требования к автотракторным двигателям. Роль отечественных ученых в создании и развитии теории двс.
- •22. Скоростная характеристика карбюраторного двигателя. Условие снятия. Коэффициент запаса крутящего момента.
- •23. Давление и температура конца впуска и влияние на них конструктивных и эксплуатационных факторов.
- •24. Объемное смесеобразование в дизелях
- •25. Коэффициент остаточных газов и влияние на него различных факторов
- •26. Всережимные регуляторы и их роль в эксплуатации трактора
- •27. Условия работы, материалы и силы, действующие на поршневое кольцо
- •28. Расчетные режимы нагрузки автотракторных двигателей
- •29. Уравновешенность и уравновешивание поршневых двс. Влияние на уравновешенность конструктивного фактора.
- •30. Способы компенсации состава смеси в автомобильных карбюраторах
- •31. Тепловой баланс двигателя. Показатели тепловой напряжености двигателя.
- •32. Характеристика простейшего карбюратора и требуемого
- •33. Перемещение, скорость и ускорение поршня центрального кривошипно-шатунного механизма
- •34. Индикаторные показатели работы двигателя. Индикаторная мощность, среднее индикаторное давление, индикаторный удельный расход топлива, индикаторный кпд.
- •35. Основные показатели работы двигателя в неустановившихся режимах. Влияние неустановившихся режимов на долговечность двигателя
29. Уравновешенность и уравновешивание поршневых двс. Влияние на уравновешенность конструктивного фактора.
Силы, возникающие при работе автомобильных и тракторных двигателей, можно разделить на два вида: уравновешенные и неуравновешенные.
Различают внешнюю и внутреннюю неуравновешенности поршневых двигателей внутреннего сгорания. Внешняя неуравновешенность характеризуется наличием периодических сил инерции, а так же опрокидывающего момента, которые передаются на опоры двигателя и далее на раму трактора. Внутренняя неуравновешенность характеризуется возникновением под действием воспринимаемых двигателем нагрузок в поперечных сечениях блока цилиндров перерезывающих сил, а так же моментов упругих сил, которые называют внутренними изгибающими моментами и внутренними скручивающими моментами .
Уравновешенность - это такое состояние двигателя, при котором на установившемся режиме работы на его опоры передаются постоянные по значению и направлению силы и моменты. Для уравновешивания сил инерции и моментов этих сил в многоцилиндровых двигателях необходимо, чтобы равнодействующие в плоскостях, проходящих через ось вала, а так же сумма этих сил относительно выбранной оси равнялась нулю. При разработке конструкций двигателей стремятся к тому, чтобы уменьшить влияние свободных сил моментов. Для этих целей применяют следующие конструктивные мероприятия : выбор соответствующего числа и расположения цилиндров и схемы расположения кривошипов, установку простейших противовесов и сложных уравновешивающих механизмов. Обеспечение конструктивно предусмотренной уравновешенности двигателя достигается выполнением соответствующих требований при производстве деталей, их сборке и регулировке, а так же при ремонте и эксплуатации двигателей. При этом обращают внимание на : 1) Соблюдение допусков на масса и размеры всего 2) проведение статической и динамической балансировки коленчатого вала 3) достижение идентичности протекания рабочего процесса во всех цилиндрах.
Двигатель называется уравновешенным, если при установившемся режиме
работы силы и моменты, действующие на опоры, постоянны по величине и
направлению.
Полностью поршневой двигатель уравновешенным быть не может вследствие неравномерности крутящего момента, вызывающего периодическое изменение нагрузки на опоры. Поэтому решение вопроса уравновешения двигателя сводится к уравновешиванию лишь наиболее значительных сил и их моментов. Математически условия полной уравновешенности многоцилиндровых двигателей можно записать в следующем виде:1) результирующие силы инерции первого порядка и их моменты равны
нулю; Σ F jI = 0 и Σ T jI = 0 ; (3.48)
2) результирующие силы инерции второго порядка и их моменты равны
нулю; Σ F jII = 0 и Σ T jII = 0; (3.49)
3) результирующие центробежные силы инерции вращающихся масс и их
моменты равны нулю; Σ F R = 0 и Σ T R = 0. (3.50)
Практически уравновешивание сил инерции первого и второго порядка
достигается путем выбора определенного числа цилиндров, их расположением и выбором соответствующей схемы коленчатого вала, а также установкой противовесов. Так, например, в шести и восьми цилиндровых рядных двигателях полностью уравновешены силы F jI и F jII и моменты от них. Центробежные силы инерции вращающихся масс практически полностью уравновешиваются за счет установки противовесов на коленчатом валу. Расчет динамического уравновешивания многоцилиндрового двигателя заключается в определении значений и направления действующих неуравновешенных сил и моментов сил инерции, которые необходимо в дальнейшем уравновесить с помощью наи¬более простых конструктивных мероприятий.
центробежная сила инерции от неуравновешенных масс Jц = тцRω2, где тц — эксцентрично вращающиеся массы, приведенные к радиусу кривошипа, кг; R — радиус кривошипа, м; ω — угловая скорость, 1 / сек.
Для уравновешивания центробежной силы инерции Jц закрепляют на продолжении щек кривошипа два равных противовеса (рис. 226) с массой
где r — расстояние от центра тяжести противовеса до оси вала.
Для прямолинейно-движущихся масс неуравновешенные силы инерции
где тп—масса поступательно-движущихся частей, кг;
а — ускорение, м/сек2.
Подставив значение ускорения а из формулы (172), получаем
где — mпRω2cos φ = Pи I —сила инерции первого порядка;
— mпRω2cos 2φ = Pи II — сила инерции второго порядка.
Силы инерции первого и второго порядков изменяются, как и ускорения, по закону косинусоиды, причем сила инерции первого порядка достигает наибольшей абсолютной величины два раза за один оборот коленчатого вала, а второго порядка — четыре раза. Силу инерции первого порядка, действующую по оси цилиндра, уравновешивают с помощью противовеса массой т, центр тяжести которого отстоит от оси вала на расстоянии r = mпR / 2m.Для уравновешивания сил второго порядка используют динамические противовесы, вращающиеся с удвоенной угловой скоростью.