
- •Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)
- •Конспект лекций физическая химия
- •Введение
- •Физическая химия
- •Термодинамика Введение Историческая справка
- •Задачи термодинамики
- •Понятия и определения
- •Внутренняя энергия системы
- •Теплота и работа
- •Первый закон термодинамики
- •Применение первого закона термодинамики к процессам в идеальных газах
- •Теплоемкость
- •Приближенные правила расчета теплоемкости
- •Зависимость теплоемкости от температуры
- •Теории теплоемкости Классическая кинетическая теория
- •Теория теплоемкости Эйнштейна-Дебая (квантовая теория) для твердого вещества 1907 г
- •Усовершенствования в теорию Эйнштейна внес Дебай
- •Квантовостатистическая теория газов
- •Тепловые эффекты химических реакций Закон Гесса. Вычисление теплового эффекта химической реакции при обычных условиях
- •Вычисление теплового эффекта методом алгебраического суммирования термохимических уравнений
- •Вычисление теплового эффекта графическим методом (методом термохимических схем)
- •Вычисление теплового эффекта по стандартным энтальпиям образования
- •Вычисление теплового эффекта реакций в водных растворах по стандартным энтальпиям образования
- •Вычисление теплового эффекта по стандартным энтальпиям сгорания
- •Вычисления общего количества теплоты, необходимого для нагревания вещества
- •Зависимость теплового эффекта реакции от температуры
- •Второй закон термодинамики. Энтропия
- •Определение энтропии по Больцману (термодинамическая вероятность)
- •Изменение энтропии в некоторых процессах
- •Изменение энтропии при фазовых превращениях
- •Изменение энтропии при изотермическом расширении (сжатии) 1 моль идеального газа
- •Изменение энтропии при нагревании системы
- •Изменение энтропии при кристаллизации переохлажденной жидкости
- •Изменение энтропии химической реакции
- •Изменение энтропии идеального газа
- •Термодинамические потенциалы
- •Характеристические функции
- •Уравнения Гиббса-Гельмгольца
- •Третий закон термодинамики
- •Парциальные молярные величины
- •Уравнения Гиббса-Дюгема
- •Следствия из уравнений Гиббса-Дюгема
- •Относительные пм свойства
- •Кажущиеся молярные величины
- •Методы определения парциальных молярных величин
- •Химический потенциал
- •Зависимость химического потенциала от температуры
- •Химический потенциал в газах
- •Химический потенциал в растворах
- •Химическое равновесие Константа равновесия. Закон действующих масс
- •Использование закона действующих масс для расчета состава равновесной газовой смеси
- •Уравнение изотермы химической реакции (влияние состава на равновесие)
- •Принцип Ле-Шателье и влияние различных факторов на химическое равновесие
- •Уравнение изобары химической реакции
- •Метод приведенных энергий Гиббса Метод Темкина-Шварцмана Равновесие в гетерогенной системе
- •Условие равновесия в гетерогенной системе
- •Константа равновесия гетерогенной системы
- •Фазовые равновесия Основные понятия и определения
- •Правило фаз Гиббса
- •Уравнение Клаузиуса-Клапейрона
- •Применение уравнения Клаузиуса-Клапейрона к различным процессам
- •Равновесия с участием растворов
- •Термодинамические условия образования растворов
- •Закон Рауля
- •Растворимость газов
- •Растворимость твердых веществ. Уравнение Шредера
- •Зависимость растворимости твердых веществ от давления
- •Температура кипения раствора
- •Температура замерзания раствора
- •Осмотическое давление
- •Фазовые диаграммы Однокомпонентные системы
- •Двухкомпонентные системы
- •Двухкомпонентные неконденсированные системы
- •Двухкомпонентные конденсированные системы Построение диаграмм
- •Типовые диаграммы состояния конденсированных систем
- •Трехкомпонентные конденсированные системы
- •Треугольник Гиббса
- •Метод Розебума
- •Правило луча
- •Сечения объемной диаграммы
- •Проекция нескольких сечений
- •Диаграмма состояния трехкомпонентной конденсированной системы без химических соединений и фазовых превращений
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся без разложения
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся с разложением
- •Компоненты системы образуют одно тройное химическое соединение s с конгруэнтной точкой плавления.
- •Водно-солевые системы
- •Диаграмма состояния трехкомпонентной водно-солевой системы без кристаллогидратов и двойных солей
- •Диаграмма растворимости двух солей с одноименным ионом в случае образования двойной соли
- •Кристаллизация соли ах сопровождается связыванием определенного количества кристаллизационной воды с образованием кристаллогидрата
- •Кристаллизация соли ах сопровождается появлением двойной соли с образованием кристаллогидрата этой двойной соли
- •Электрохимия Введение
- •Историческая справка о науке электрохимии
- •Растворы электролитов Основные понятия и определения
- •Историческая справка о природе растворов электролитов
- •О сольватации и ассоциации Ассоциация
- •Сольватация
- •Термохимическая теория растворения электролитов
- •Теория гидратации Борна
- •Метод активностей
- •Теория Дебая-Хюккеля
- •Электрическая проводимость растворов Введение
- •Зависимость электропроводности от температуры
- •Движение ионов в электрическом поле. Числа переноса ионов
- •Зависимость удельной электрической проводимости растворов электролитов от концентрации
- •Метод кондуктометрии
- •Термодинамика электродных систем Введение
- •Закон Фарадея
- •Электроды, цепи, их схематическая запись
- •Правила записи электродов и цепей
- •Возникновение скачка потенциала на границе раствор-металл
- •Двойной электрический слой
- •Потенциал нулевого заряда
- •Стандартные потенциалы
- •Уравнение Нернста и направление протекания овр (термодинамика обратимых электрохимических систем)
- •Типы электродов
- •Электрохимические цепи
- •Химические цепи
- •Работа аккумулятора
- •Концентрационные цепи
- •Коррозия
- •Химическая кинетика Введение
- •Основные понятия и определения
- •Зависимость скорости реакции от концентрации реагирующих веществ. Закон действующих масс
- •Порядок реакции
- •Принцип независимости протекания химических реакций
- •Кинетика закрытых систем Простые реакции Односторонняя реакция первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Сложные реакции
- •Двусторонние (обратимые) реакции
- •Параллельные реакции первого порядка
- •Последовательные реакции первого порядка
- •Сопряженные реакции
- •Автокаталитические реакции
- •Цепные химические реакции
- •Вероятностная теория цепных реакций
- •Горение и взрыв
- •Цепной взрыв или воспламенение
- •Тепловой взрыв
- •Формальная кинетика открытых систем. Приближение формально простых и элементарных процессов
- •Модель реактора идеального смешения
- •Модель реактора идеального вытеснения
- •Влияние температуры на скорость реакции Правило Вант-Гоффа
- •Уравнение Аррениуса
- •Теоретические основы расчета констант скорости химической реакции Теория активных столкновений
- •Теория активированного комплекса
- •О поверхности потенциальной энергии элементарного химического акта
- •О расчете скоростей элементарных реакций
- •Константа скорости реакции и термодинамические параметры активированного комплекса
- •Кинетика гетерогенных процессов
- •Уравнения Фика
- •Нестационарная диффузия Модель нестационарной линейной полубесконечной диффузии
- •Модель нестационарной сферической полубесконечной диффузии
- •Стационарная конвективная диффузия
- •Определение лимитирующей стадии (реакция или диффузия?)
- •Электролиз
- •Порядок восстановления катионов
- •Порядок окисления анионов
- •Кинетика электродных процессов (поляризация и перенапряжение)
- •Электродная поляризация
- •Диффузионное перенапряжение. Уравнение Нернста-Бруннера
- •Электрохимическое перенапряжение
- •Перенапряжение при электролитическом выделении водорода
- •Катализ
- •Основные принципы каталитического действия
- •Слитно или раздельно?
- •Кинетические уравнения каталитических реакций
- •Энергия активации каталитических реакций
- •Соотношение между эффективной и истинной энергиями активации
- •Специфичность катализа
- •Активность и селективность катализатора
- •Гомогенный катализ
- •Кислотно-основной катализ
- •Общий кислотно-основной катализ
- •Специфический кислотно-основной катализ
- •Гетерогенный катализ Общие слова
- •Виды гетерогенных катализаторов
- •Старение и отравление катализаторов
- •Основные стадии гетерогенно-каталитического процесса
- •Закон действующих поверхностей
- •Уравнения адсорбции
- •Основные кинетические уравнения гетерогенного катализа
- •Примеры типовых схем
- •Мультиплетная теория гетерогенного катализа (а.А.Баландин)
- •Содержание
Термодинамические условия образования растворов
Образование растворов из компонентов – процесс самопроизвольный. Следовательно, как и любой самопроизвольный процесс, протекающий в закрытой системе, которая находится при определенных внешних условиях (P,T = const или V,T = const) сопровождается уменьшением термодинамического потенциала – энергии Гиббса, Гельмгольца и др. Соответственно, процесс будет протекать самопроизвольно до выравнивания потенциалов чистого вещества и этого же вещества в растворе. Исключение составляют термодинамически неустойчивые пересыщенные растворы.
С точки зрения термодинамики раствор называется насыщенным, когда химический потенциал чистого растворяемого вещества (твердого, жидкого или газообразного) равен химическому потенциалу этого вещества в растворе.
Растворенные в системе вещества оказывают влияние на физические свойства раствора.
Закон Рауля
Допустим, что
растворитель находится в равновесии
со своим паром при некоторой температуре
Т. Если теперь растворить в жидкой фазе
растворителя какое-нибудь вещество, то
для сохранения равновесия давление
пара должно измениться. Если первоначальное
давление пара растворителя было
,
то после добавления растворяемого
вещества стало
.
При этом ΔР < 0 в силу хотя бы того,
что количество молекул растворителя в
растворе уменьшается, а, следовательно,
уменьшается и давление пара растворителя
над раствором, т. е. в паровую фазу выходят
меньшее число частиц растворителя, чем
в чистом растворителе.
Для описания зависимости давления насыщенного пара растворителя над раствором от концентрации раствора рассмотрим равновесие ж–г. Для вывода уравнения зависимости воспользуемся приближением идеальной системы (идеальный газ находится в равновесии с идеальной жидкостью).
В равновесном состоянии:
или
или
– дифференциальное
уравнение, описывающее зависимость
давления насыщенного пара компонента
раствора (растворителя, который apriory
жидкость) от его химического потенциала.
В идеальном растворе
или
– уравнения закона
Рауля (1888 г.)
«Равновесное парциальное давление пара компонента в идеальном растворе пропорционально мольной доле этого компонента»
Физический смысл закона Рауля состоит в том, что растворяя какое-либо вещество в данном растворителе, мы понижаем его концентрацию в единице объема, и тем самым понижаем давление пара растворителя над раствором. В результате чего равновесие между жидкостью и паром должно устанавливаться при меньшей концентрации пара, т. е. при меньшем давлении пара растворителя.
Закон Рауля получен
в предположении постоянства температуры
и общего давления, т. е.
,
что означает, что все компоненты в чистом
виде (в случае многокомпонентного
раствора) должны иметь одинаковые
парциальные давления, что для реальных
растворов невыполнимо.
Однако если общее давление невелико, а парциальные давления компонентов могут отличаться друг от друга, то закон Рауля справедлив и в этом случае, что в свою очередь означает неравенство концентрации того или иного вещества в жидкой и газообразной фазах.
Для бинарного раствора закон Рауля обычно записывают в виде
“относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества в растворе”.
Закон Рауля применим к растворителю в предельно разбавленных и идеальных растворах и к растворенному веществу только в идеальных растворах.
В приближении идеальной системы можно оценить растворимость вещества:
– мольная доля
растворенного вещества в насыщенном
растворе;
–
давление насыщенного пара компонента
над ним самим, например, над твердым
веществом;
–
давление насыщенного пара компонента
над раствором.
Приближение предельно разбавленного раствора
В предельно разбавленных растворах законы идеальных растворов справедливы только для растворителя, т.е. сохраняются в силе уравнения:
;
и
В предельно разбавленных растворах при помощи закона Рауля можно определить молярную массу растворенного вещества:
В отличие от ситуации идеального раствора, оценить растворимость вещества для предельно разбавленного раствора при помощи закона Рауля нельзя.
Неидеальная система
При переходе к неидеальной системе понятие парциальное давление заменяется на фугитивность, концентрация раствора – на активность: