
- •Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)
- •Конспект лекций физическая химия
- •Введение
- •Физическая химия
- •Термодинамика Введение Историческая справка
- •Задачи термодинамики
- •Понятия и определения
- •Внутренняя энергия системы
- •Теплота и работа
- •Первый закон термодинамики
- •Применение первого закона термодинамики к процессам в идеальных газах
- •Теплоемкость
- •Приближенные правила расчета теплоемкости
- •Зависимость теплоемкости от температуры
- •Теории теплоемкости Классическая кинетическая теория
- •Теория теплоемкости Эйнштейна-Дебая (квантовая теория) для твердого вещества 1907 г
- •Усовершенствования в теорию Эйнштейна внес Дебай
- •Квантовостатистическая теория газов
- •Тепловые эффекты химических реакций Закон Гесса. Вычисление теплового эффекта химической реакции при обычных условиях
- •Вычисление теплового эффекта методом алгебраического суммирования термохимических уравнений
- •Вычисление теплового эффекта графическим методом (методом термохимических схем)
- •Вычисление теплового эффекта по стандартным энтальпиям образования
- •Вычисление теплового эффекта реакций в водных растворах по стандартным энтальпиям образования
- •Вычисление теплового эффекта по стандартным энтальпиям сгорания
- •Вычисления общего количества теплоты, необходимого для нагревания вещества
- •Зависимость теплового эффекта реакции от температуры
- •Второй закон термодинамики. Энтропия
- •Определение энтропии по Больцману (термодинамическая вероятность)
- •Изменение энтропии в некоторых процессах
- •Изменение энтропии при фазовых превращениях
- •Изменение энтропии при изотермическом расширении (сжатии) 1 моль идеального газа
- •Изменение энтропии при нагревании системы
- •Изменение энтропии при кристаллизации переохлажденной жидкости
- •Изменение энтропии химической реакции
- •Изменение энтропии идеального газа
- •Термодинамические потенциалы
- •Характеристические функции
- •Уравнения Гиббса-Гельмгольца
- •Третий закон термодинамики
- •Парциальные молярные величины
- •Уравнения Гиббса-Дюгема
- •Следствия из уравнений Гиббса-Дюгема
- •Относительные пм свойства
- •Кажущиеся молярные величины
- •Методы определения парциальных молярных величин
- •Химический потенциал
- •Зависимость химического потенциала от температуры
- •Химический потенциал в газах
- •Химический потенциал в растворах
- •Химическое равновесие Константа равновесия. Закон действующих масс
- •Использование закона действующих масс для расчета состава равновесной газовой смеси
- •Уравнение изотермы химической реакции (влияние состава на равновесие)
- •Принцип Ле-Шателье и влияние различных факторов на химическое равновесие
- •Уравнение изобары химической реакции
- •Метод приведенных энергий Гиббса Метод Темкина-Шварцмана Равновесие в гетерогенной системе
- •Условие равновесия в гетерогенной системе
- •Константа равновесия гетерогенной системы
- •Фазовые равновесия Основные понятия и определения
- •Правило фаз Гиббса
- •Уравнение Клаузиуса-Клапейрона
- •Применение уравнения Клаузиуса-Клапейрона к различным процессам
- •Равновесия с участием растворов
- •Термодинамические условия образования растворов
- •Закон Рауля
- •Растворимость газов
- •Растворимость твердых веществ. Уравнение Шредера
- •Зависимость растворимости твердых веществ от давления
- •Температура кипения раствора
- •Температура замерзания раствора
- •Осмотическое давление
- •Фазовые диаграммы Однокомпонентные системы
- •Двухкомпонентные системы
- •Двухкомпонентные неконденсированные системы
- •Двухкомпонентные конденсированные системы Построение диаграмм
- •Типовые диаграммы состояния конденсированных систем
- •Трехкомпонентные конденсированные системы
- •Треугольник Гиббса
- •Метод Розебума
- •Правило луча
- •Сечения объемной диаграммы
- •Проекция нескольких сечений
- •Диаграмма состояния трехкомпонентной конденсированной системы без химических соединений и фазовых превращений
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся без разложения
- •Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся с разложением
- •Компоненты системы образуют одно тройное химическое соединение s с конгруэнтной точкой плавления.
- •Водно-солевые системы
- •Диаграмма состояния трехкомпонентной водно-солевой системы без кристаллогидратов и двойных солей
- •Диаграмма растворимости двух солей с одноименным ионом в случае образования двойной соли
- •Кристаллизация соли ах сопровождается связыванием определенного количества кристаллизационной воды с образованием кристаллогидрата
- •Кристаллизация соли ах сопровождается появлением двойной соли с образованием кристаллогидрата этой двойной соли
- •Электрохимия Введение
- •Историческая справка о науке электрохимии
- •Растворы электролитов Основные понятия и определения
- •Историческая справка о природе растворов электролитов
- •О сольватации и ассоциации Ассоциация
- •Сольватация
- •Термохимическая теория растворения электролитов
- •Теория гидратации Борна
- •Метод активностей
- •Теория Дебая-Хюккеля
- •Электрическая проводимость растворов Введение
- •Зависимость электропроводности от температуры
- •Движение ионов в электрическом поле. Числа переноса ионов
- •Зависимость удельной электрической проводимости растворов электролитов от концентрации
- •Метод кондуктометрии
- •Термодинамика электродных систем Введение
- •Закон Фарадея
- •Электроды, цепи, их схематическая запись
- •Правила записи электродов и цепей
- •Возникновение скачка потенциала на границе раствор-металл
- •Двойной электрический слой
- •Потенциал нулевого заряда
- •Стандартные потенциалы
- •Уравнение Нернста и направление протекания овр (термодинамика обратимых электрохимических систем)
- •Типы электродов
- •Электрохимические цепи
- •Химические цепи
- •Работа аккумулятора
- •Концентрационные цепи
- •Коррозия
- •Химическая кинетика Введение
- •Основные понятия и определения
- •Зависимость скорости реакции от концентрации реагирующих веществ. Закон действующих масс
- •Порядок реакции
- •Принцип независимости протекания химических реакций
- •Кинетика закрытых систем Простые реакции Односторонняя реакция первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Сложные реакции
- •Двусторонние (обратимые) реакции
- •Параллельные реакции первого порядка
- •Последовательные реакции первого порядка
- •Сопряженные реакции
- •Автокаталитические реакции
- •Цепные химические реакции
- •Вероятностная теория цепных реакций
- •Горение и взрыв
- •Цепной взрыв или воспламенение
- •Тепловой взрыв
- •Формальная кинетика открытых систем. Приближение формально простых и элементарных процессов
- •Модель реактора идеального смешения
- •Модель реактора идеального вытеснения
- •Влияние температуры на скорость реакции Правило Вант-Гоффа
- •Уравнение Аррениуса
- •Теоретические основы расчета констант скорости химической реакции Теория активных столкновений
- •Теория активированного комплекса
- •О поверхности потенциальной энергии элементарного химического акта
- •О расчете скоростей элементарных реакций
- •Константа скорости реакции и термодинамические параметры активированного комплекса
- •Кинетика гетерогенных процессов
- •Уравнения Фика
- •Нестационарная диффузия Модель нестационарной линейной полубесконечной диффузии
- •Модель нестационарной сферической полубесконечной диффузии
- •Стационарная конвективная диффузия
- •Определение лимитирующей стадии (реакция или диффузия?)
- •Электролиз
- •Порядок восстановления катионов
- •Порядок окисления анионов
- •Кинетика электродных процессов (поляризация и перенапряжение)
- •Электродная поляризация
- •Диффузионное перенапряжение. Уравнение Нернста-Бруннера
- •Электрохимическое перенапряжение
- •Перенапряжение при электролитическом выделении водорода
- •Катализ
- •Основные принципы каталитического действия
- •Слитно или раздельно?
- •Кинетические уравнения каталитических реакций
- •Энергия активации каталитических реакций
- •Соотношение между эффективной и истинной энергиями активации
- •Специфичность катализа
- •Активность и селективность катализатора
- •Гомогенный катализ
- •Кислотно-основной катализ
- •Общий кислотно-основной катализ
- •Специфический кислотно-основной катализ
- •Гетерогенный катализ Общие слова
- •Виды гетерогенных катализаторов
- •Старение и отравление катализаторов
- •Основные стадии гетерогенно-каталитического процесса
- •Закон действующих поверхностей
- •Уравнения адсорбции
- •Основные кинетические уравнения гетерогенного катализа
- •Примеры типовых схем
- •Мультиплетная теория гетерогенного катализа (а.А.Баландин)
- •Содержание
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)
Кафедра общей и физической химии
Конспект лекций физическая химия
(наименование учебной дисциплины согласно учебному плану)
составители: проф Д.Э. Чиркст, проф. В.Е.Коган, проф. О.В. Черемисина, доц. И.И.Иванов, доц. Литвинова Т.Е.
Санкт-Петербург
2009
Введение
Цель (назначение) издания, соответствие учебной программе
Конспект лекций соответствует учебным программам по дисциплине «Физическая химия» для направлений 240100 «Химическая технология», профиля «Химическая технология переработки энергоносителей и углеродных материалов»
Настоящая разработка является изложением материала курса лекций по физической химии, В ней представлены основные разделы курса, ориентированные на получение теоретических знаний в области физической химии и приобретении навыков физико-химического описания процессов, применяемых в металлургии и химической технологии
Физическая химия
Физическая химия преимущественно теоретическая наука. Выделяют два основных направления физической химии
1. Описание химических явлений при помощи физических законов.
Явления химические в большинстве случаев тяжело поддаются строгому математическому описанию. Этим они отличаются от явлений физических. Однако, любой химический процесс сопровождается изменением физических свойств. Поэтому законы физики достаточно достоверно описывают химические свойства веществ. Те стороны химических явлений, которые могут быть описаны физическими законами, составляют предмет физической химии.
2. Анализ. Развитие физических методов исследования химических явлений, которые сопровождаются изменением физических величин.
По мере развития физической химии, из общего направления выделились частные науки, к которым относятся электрохимия, коллоидная химия, химия твердого теле, квантовая химия.
Общими разделами физической химии, основные законы которых находят применение во множестве частных случаев, являются термодинамика и кинетика.
Термодинамика Введение Историческая справка
Термодинамика как наука возникла в конце первой половины 19 века.
Жоффруа – понятие о химическом сродстве, составление таблиц химического сродства; предположение о самопроизвольном протекании экзотермических процессов.
Бекман – продолжение составления таблиц химического сродства; изобретение термометра Бекмана.
Лавуазье – измерение тепловых эффектов физико-химических процессов; основы термохимии.
Гесс – термохимические исследования; закон Гесса.
Основой термодинамики являются три закона. Законы термодинамики были сформулированы в результате обобщения человеческого опыта.
Первый закон термодинамики (Кельвин, Клаузиус) связан с законом сохранения энергии. Он позволяет рассчитывать тепловые балансы различных процессов, в том числе химических реакций. С законом сохранения связана одна из формулировок первого начала термодинамики: невозможен вечный двигатель первого рода, который производил бы работу, не затрачивая при этом энергии (Освальд).
Второй закон термодинамики (Клаузиус, Карно, Освальд) – закон о возможности протекания самопроизвольных процессов. На основании второго закона термодинамики можно предсказать, при каких внешних условиях возможен процесс, и в каком направлении он будет протекать. Формулировка Клаузиуса: теплота не может переходить от более холодного тела к более горячему сама собой, даровым процессом. Формулировка Освальда: невозможен вечный двигатель второго рода, в котором вся теплота может быть превращена в работу.
Пример: 1927 г. запатентован способ получения уксусной кислоты из метана и углекислого газа: CH4 + CO2 = CH3COOH. 1931 г. – данные патента попробовали осуществить на практике. Вывод – не идет процесс в указанных в патенте условиях (Т, Р). Процесс, как показал расчет, протекает с малым выходом при 105 атм и 1200°С
Третий закон термодинамики (Нернст, Гиббс) – закон об абсолютном значении энтропии, который был сформулирован в 1906 – 1907 г.г. Третий закон позволяет вычислить константу равновесия и возможный выход реакции.
Термодинамические законы одинаково справедливы как для макроскопических, так и для микроскопических объектов материального мира. Макроскопические объекты обычно исследуются с помощью метода первых принципов, т. е. принципов классической (макроскопической) термодинамики, в то время как микроскопические – с помощью метода модельных гипотез (методов статистической физики).
Термодинамический метод опирается исключительно на опыт, поэтому его результаты отличаются достоверностью, они не зависят от наших представлений о внутреннем (микроскопическом) механизме изучаемых явлений.
Сущность метода модельных гипотез состоит в том, что выдвигается предположение о существовании некоего внутреннего механизма и на этой базе устанавливаются основные черты рассматриваемого явления, т. е. связь между физическими законами микро- и макромира.