
- •1. Что называется случайным событием, связанным с опытом? Как определяется событие, противоположное данному? Приведите примеры.
- •2.Что называется суммой и произведением событий а и в? Имеют ли смысл сумма и произведение событий, относящихся к разным опытам? Перечислите все случай наступления события
- •4. Какие события называются достоверными и невозможными и каковы их ве-
- •5.В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
- •6. Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
- •7. Докажите, что . Что обозначает событие ?
- •10 Сформулируйте и докажите теорему сложения вер-тей для любых событий a и b. Что такое правило сложения вер-тей для несовместных соб. A и b?
- •15. Какие события называются независимыми? Докажите, что если события
- •16. Что такое правило умножения вероятностей: а) для независимых событий
- •17. Как определяется независимость в случае трех событий? Рассмотрите при-
- •18. Как соотносятся понятия независимые события а и в и несовместные события а и в? Следует ли из независимости событий а,в,с независимость событий ав и ? Почему?
- •23. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
- •24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно
- •25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
- •26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
- •28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.
- •29. Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.
- •32. Выведите формулу для наиболее вероятного числа успехов в серии n испытаний по формуле Бернулли.
- •34. Может ли наиболее вероятное число успехов в схеме Бернулли отличаться от математического ожидания числа успехов на 2? Ответ обоснуйте.
- •36. Запишите интегральную приближенную формулу Лапласа и приведите основные свойства функции Лапласа φ(X) . При каких условиях данная формула дает хорошее приближение?
- •38. Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события а от вероятности p наступления a в одном опыте.
- •39. Сформулируйте и докажите предельную теорему Пуассона.
- •40. Запишите приближённые формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите примеры их применения.
- •41. Что такое сл.Величина? Дискретная величина? Что назыв функцией распределения случ. Величины? Привести пример функции распределения некоторой дискретной сл вел и построить график.
- •42. Сформулируйте основные свойства функции распределения сл величины и продемонстрируйте их на примере.
- •43. Может ли график функции распределения быть прямой линией? Ответ обоснуйте.
- •45. Дана дискретная случайная величина с законом распределения
- •47 Что называется биномиальным распределением с параметрами n и p? Приведите пример опытов, в котором определена случайная величина, распределенная по биномиальному закону.
- •52. Перечислите основные свойства математического ожидания дискретной случайной величины. Объясните, что понимается под суммой и произведением случайных величин.
- •54. Может ли математическое ожидание дискретно случайно величины, принимающей целые значения, быть числом не целым? Ответ обойснуйте.
- •58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии.
- •61. Докажите, что если X и y – независимые случайные величины, то
- •63. Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
- •70. Докажите, что коэффициент корреляции случайных величин х и у удовлетворяет условию . Что можно сказать о х и у, если ? Если ?
- •74. Перечислите основные свойства функции плотности вероятности. Чем объясняется название «плотность вероятности»?
- •82. Выведите формулу для нахождения мат. Ожидания и дисперсии случайной величины, равномерно распределенной на отрезке [a; b].
- •83. Объясните (с доказательством) вероятностный смысл параметра m в формуле для функции плотности случайной величины х, распределенной по нормальному закону.
- •84. Объясните (с доказательством) вероятностный смысл параметра σ в формуле для функции плотности случайной величины, распределенной по нормальному закону.
- •85. Докажите, что для случайной величины, распределенной по показательному закону с параметром , математическое ожидание
- •87.Что такое правило для нормального распределения? Верно ли, что для любой нормальной случайной величины х существует отрезок , для которого ? Ответ обоснуйте.
- •88. Формулируйте определение начальных моментов случайной величины. Докажите, что если х и у независимые случайные величины, то
- •89. Пусть - начальные, а - центральные моменты некоторой случайной величины.
- •90. Сформулируйте определение асимметрии As(X ) случайной величины X и укажите ее основные свойства. Что характеризует асимметрия случайной величины?
- •91. Сформулируйте определение эксцесса Ex(X) случайной величины X и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
- •92 Найдите асимметрию и эксцесс равномерного распределения на отрезке [а,b].
- •93.Что называется системой случайных величин? Сформулируйте определение функции распределения двумерного случайного вектора (х,y) и дайте его геометрическую интерпретацию.
- •94. Сформулируйте основные свойства функции распределения случайного вектора (х,у) и приведите примеры двумерной функции распределения.
- •F(X)-неубывающая функция, т.Е.
- •101.Каков смысл начальных и центральных моментов двумерного случайного вектора (X,y)?Ответ обоснуйте.
- •102.Дайте определение корреляционной и ковариационной матриц для системы случайных величин х1,х2…Хn и сформулируйте их основные свойства.
- •103. Как найти ковариацию Сov(X,y) случайных величин X и y , если известна функция плотности
- •105. Как определяются условные законы распределения для дискретных случайных величин X и y?
- •107. Как определяется условное математическое ожидание непрерывной слу-
- •108. Сформулируйте и докажите неравенство Чебышева.
- •109. Используя н-во Чебышева, сформулируйте и док-те «правило трех сигм» для произвольной св X.
- •110. Сформулируйте и докажите теорему Чебушева для бесконечной последовательности случайных величин с одинаковыми математическими ожиданиями и дисперсиями, ограниченными одним и тем же числом.
- •111 Сформулируйте и докажите теорему Бернулли (закон больших чисел).
- •112. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.
- •113. Сформулируйте центральную предельную теорему для одинаково распределенных случайных величин и приведите пример ее применения.
- •114. Используя центральную предельную теорему, обоснуйте интегральную формулу Лапласа.
23. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
Геометрический
подход заключается на предположении,
что попадание каждой точки в геометрическом
множестве(
),
а в какое-то подмножество А
.
Вероятность Р(А)
пропорциональна мере (длин, площади и
т.д.) множества А, т.е. Р(А)=
с
(А)
), где
(А)-мера
множества А,
а с=const.
Т.к. P(
)=1,
то с = 1/
(
),
так что Р(А)=
.
1) - АВ, F-отрезок СD, СD АВ. - длина, (CD)=d-c, (BA)=b-a, значит
Р(А)=
.
2) -треугольник АВС, F-фигура . (F)=площадь F, ( )-площадь АВС. Р(F)=площадь F/ площадь ABC.
24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно
выбирается в круге радиуса r? в кубе со стороной a?
Геометрический подход заключается на предположении, что попадание каждой точки в геометрическом множестве( ), а в какое-то подмножество А .Вероятность Р(А) пропорциональна мере (длин, площади и т.д.) множества А, т.е. Р(А)= с (А), где (А)-мера множества А, а с=const. Т.к. P( )=1, то с = 1/ ( ), так что Р(А)= .
1) - круг с радиусом r
F – фигура
(F)=площадь F
( )=площадь
P(F)=площадь F/площадь круга радиуса r
2) P(F)=объем F/ объем круга
25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
Полная группа событий - это система случайных событий такая, что они все попарно несовместны и в результате произведённого случайного эксперимента непременно произойдёт одно из них.
АВ, А*В, А*+В* (чёрточка одна на А и В)-не образуют полной группы событий.
А*+В*(чёрточка одна на А и В)=А*В*
Полную группу событий составляют: АВ, А*В, АВ*, А*В*
Сл-но АВ, А*В, А*В* - не образуют полной группы.
Пример: студент сдаёт 2 зачёта, соб.А- сдан 1 зачёт, соб.В- сдан 2 зачёт, Р(А)=1/2, Р(В)=2/3
Р(АВ+А*В+А*В*)≠1, т.к. Р(АВ*)≠0, сл-но соб. АВ, А*В, А*+В* (чёрточка одна на А и В)-не образуют полной группы.
26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
Да, события образуют полную группу событий для любого А и В, т.к. они попарно несовместны и при каждом осуществлении опыта обязательно наступит хотя бы одно из них. (проиллюстрировать рисунком)
27
Если в
каждом из n
независимых испытаний вероятность р
появления A
const,
то как угодно близка к единице вероятность
того, что отклонение относительной
частоты от вероятности р по абс величине
будет сколь угодно малым, если число
испытаний достаточно велико.
xi-число
появлений событий в i-м
испытании (i=1…n).
Каждая из величин может принимать 2
значения: 1 с вер-ю р, 0 с вер q
xi- попарно независ., тогда D(xi)=pq. Т.к. p+q=1, то pq 1/4 дисперсии огранич с=1/4
Применим
т. Чебышева, получим
Матем
ожидание а каждой из величин xi
= р наступл.
событ.
Каждая xi при появлении события в соотв. испытании принимает значение = единице x1+x2+…+xn= m появлен. события в n испытаниях ( x1+x2+…+xn)/n= m/n.
Учитывая
это, получим,