Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria-Terver_faynal.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.53 Mб
Скачать

111 Сформулируйте и докажите теорему Бернулли (закон больших чисел).

Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если - сколь угодно малое поло­жительное число, то при соблюдении условий теоремы имеет место равенство . Доказательство. Обозначим через Х1 дискретную случайную величину—число появлений события в первом испытании, через Х2—во втором, ..., Хn—в n-м испы­тании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие А наступило) с вероят­ностью р и 0 (событие не появилось) с вероятностью 1—р=q. Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины по­парно независимы и дисперсии их ограничены. Оба усло­вия выполняются. Действительно, попарная независимость величин X1, Х2, . . ., Хn следует из того, что испытания независимы. Дисперсия любой величины Xi (i= 1, 2, . .., n) равна произведению pq, так как p+q=1,то произве­дение pq не превышает 1/4 и, следовательно, дисперсии всех величин ограничены, например, числом С =1/4. Применяя теорему Чебышева (частный случай) к рас­сматриваемым величинам, имеем Приняв во внимание, что математическое ожидание а каждой из величин Xi (т. е. математическое ожидание числа появлений события в одном испытании) равно ве­роятности р наступления события, получим Остается показать, что дробь (X1+X2+…Xn)/n равна относительной частоте т/п появлений события А в испытаниях. Действительно, каждая из величин X1,X2,…Xn при появлении события в соответствующем испытании принимает значение, равное единице; следовательно, сумма X1+X2+…+Xn равна числу m появления события в n испытаниях, а значит, Учитывая, это равенство, окончательно получим

. Итак, теорема Бернулли утверждает, что при относительная частота стремится по вероятности к p.

112. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.

ЦПТ для одинаково распределенных СВ: Пусть X1…Xn – последовательность независимых одинаково распределенных СВ M(X1)=…=M(Xn)=m<+; D(X1)=…=D(Xn)=2<+, тогда закон распр СВ

Sn = (x1+…+xn – nm)/√n, тогда Sn стремится к стандартному нормальному закону при n→ {

Применение: При измерении какой-либо физ величины на результат влияет огромное кол-во факторов. Каждый из этих факторов порождает ничтожную ошибку Xk. Результирующая ошибка Sn будет суммой величин Xk, то есть вся сумма Sn будет иметь закон распределения, близкий к нормальному. Сл-но, случайная ошибка измерения подчиняется нормальному закону распр: мат ожидание равно нулю, среднее квадратич откл – характеризует точность измерения. Др. пример: массовое производство. Изготовляются большие партии однотипных изделий, где каждое должно соответствовать стандарту. Но есть отклонение от стандарта, кот порождаются причинными случайного хар-ра (Xk). Sn имеет норм распр.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]