
- •1. Что называется случайным событием, связанным с опытом? Как определяется событие, противоположное данному? Приведите примеры.
- •2.Что называется суммой и произведением событий а и в? Имеют ли смысл сумма и произведение событий, относящихся к разным опытам? Перечислите все случай наступления события
- •4. Какие события называются достоверными и невозможными и каковы их ве-
- •5.В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
- •6. Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
- •7. Докажите, что . Что обозначает событие ?
- •10 Сформулируйте и докажите теорему сложения вер-тей для любых событий a и b. Что такое правило сложения вер-тей для несовместных соб. A и b?
- •15. Какие события называются независимыми? Докажите, что если события
- •16. Что такое правило умножения вероятностей: а) для независимых событий
- •17. Как определяется независимость в случае трех событий? Рассмотрите при-
- •18. Как соотносятся понятия независимые события а и в и несовместные события а и в? Следует ли из независимости событий а,в,с независимость событий ав и ? Почему?
- •23. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
- •24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно
- •25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
- •26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
- •28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.
- •29. Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.
- •32. Выведите формулу для наиболее вероятного числа успехов в серии n испытаний по формуле Бернулли.
- •34. Может ли наиболее вероятное число успехов в схеме Бернулли отличаться от математического ожидания числа успехов на 2? Ответ обоснуйте.
- •36. Запишите интегральную приближенную формулу Лапласа и приведите основные свойства функции Лапласа φ(X) . При каких условиях данная формула дает хорошее приближение?
- •38. Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события а от вероятности p наступления a в одном опыте.
- •39. Сформулируйте и докажите предельную теорему Пуассона.
- •40. Запишите приближённые формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите примеры их применения.
- •41. Что такое сл.Величина? Дискретная величина? Что назыв функцией распределения случ. Величины? Привести пример функции распределения некоторой дискретной сл вел и построить график.
- •42. Сформулируйте основные свойства функции распределения сл величины и продемонстрируйте их на примере.
- •43. Может ли график функции распределения быть прямой линией? Ответ обоснуйте.
- •45. Дана дискретная случайная величина с законом распределения
- •47 Что называется биномиальным распределением с параметрами n и p? Приведите пример опытов, в котором определена случайная величина, распределенная по биномиальному закону.
- •52. Перечислите основные свойства математического ожидания дискретной случайной величины. Объясните, что понимается под суммой и произведением случайных величин.
- •54. Может ли математическое ожидание дискретно случайно величины, принимающей целые значения, быть числом не целым? Ответ обойснуйте.
- •58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии.
- •61. Докажите, что если X и y – независимые случайные величины, то
- •63. Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
- •70. Докажите, что коэффициент корреляции случайных величин х и у удовлетворяет условию . Что можно сказать о х и у, если ? Если ?
- •74. Перечислите основные свойства функции плотности вероятности. Чем объясняется название «плотность вероятности»?
- •82. Выведите формулу для нахождения мат. Ожидания и дисперсии случайной величины, равномерно распределенной на отрезке [a; b].
- •83. Объясните (с доказательством) вероятностный смысл параметра m в формуле для функции плотности случайной величины х, распределенной по нормальному закону.
- •84. Объясните (с доказательством) вероятностный смысл параметра σ в формуле для функции плотности случайной величины, распределенной по нормальному закону.
- •85. Докажите, что для случайной величины, распределенной по показательному закону с параметром , математическое ожидание
- •87.Что такое правило для нормального распределения? Верно ли, что для любой нормальной случайной величины х существует отрезок , для которого ? Ответ обоснуйте.
- •88. Формулируйте определение начальных моментов случайной величины. Докажите, что если х и у независимые случайные величины, то
- •89. Пусть - начальные, а - центральные моменты некоторой случайной величины.
- •90. Сформулируйте определение асимметрии As(X ) случайной величины X и укажите ее основные свойства. Что характеризует асимметрия случайной величины?
- •91. Сформулируйте определение эксцесса Ex(X) случайной величины X и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
- •92 Найдите асимметрию и эксцесс равномерного распределения на отрезке [а,b].
- •93.Что называется системой случайных величин? Сформулируйте определение функции распределения двумерного случайного вектора (х,y) и дайте его геометрическую интерпретацию.
- •94. Сформулируйте основные свойства функции распределения случайного вектора (х,у) и приведите примеры двумерной функции распределения.
- •F(X)-неубывающая функция, т.Е.
- •101.Каков смысл начальных и центральных моментов двумерного случайного вектора (X,y)?Ответ обоснуйте.
- •102.Дайте определение корреляционной и ковариационной матриц для системы случайных величин х1,х2…Хn и сформулируйте их основные свойства.
- •103. Как найти ковариацию Сov(X,y) случайных величин X и y , если известна функция плотности
- •105. Как определяются условные законы распределения для дискретных случайных величин X и y?
- •107. Как определяется условное математическое ожидание непрерывной слу-
- •108. Сформулируйте и докажите неравенство Чебышева.
- •109. Используя н-во Чебышева, сформулируйте и док-те «правило трех сигм» для произвольной св X.
- •110. Сформулируйте и докажите теорему Чебушева для бесконечной последовательности случайных величин с одинаковыми математическими ожиданиями и дисперсиями, ограниченными одним и тем же числом.
- •111 Сформулируйте и докажите теорему Бернулли (закон больших чисел).
- •112. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.
- •113. Сформулируйте центральную предельную теорему для одинаково распределенных случайных величин и приведите пример ее применения.
- •114. Используя центральную предельную теорему, обоснуйте интегральную формулу Лапласа.
87.Что такое правило для нормального распределения? Верно ли, что для любой нормальной случайной величины х существует отрезок , для которого ? Ответ обоснуйте.
Правило трех сигм – отклонение любой случайной величины от ее математического ожидания будет не более трех средних квадратических отклонений (по абсолютной величине). Правило трех сигм применимо для большинства СВ, встречающихся на практике. P (|X-a|<=3сигма) для нормального закона = 0,9973. Для равномерного закона =1. Для показательного = 0,9827 и т.д.
Для
нормально распределенной с.в.Х справедлива
формула
Преобразуем
эту формулу, приняв
В итоге получим
Если
t=3
и, следовательно,
,
то
,
т.е. вероятность того, что отклонение
по абсолютной величине будет меньше
утроенного среднего квадратического
отклонения, равна 0,9973.
2. Верно.
88. Формулируйте определение начальных моментов случайной величины. Докажите, что если х и у независимые случайные величины, то
Начальным моментом порядка k (k принадлежит N), свободная величина Х называется мат.ожиданием k-й степени Х.
Центральным моментом порядка k СВ Х называется мат.ожидание k-й степени отклонения:
Теорема:
если Х и У независимые СВ, то
Док-во:
89. Пусть - начальные, а - центральные моменты некоторой случайной величины.
Докажите,
что:
Докажем связь начальных и центральных моментов:
90. Сформулируйте определение асимметрии As(X ) случайной величины X и укажите ее основные свойства. Что характеризует асимметрия случайной величины?
Определение. Асимметрией распределения называют отношение третьего центрального момента к кубу стандартного отклонения:
Замечание. Асимметрия случайной величины X совпадает с третьим начальным (центральным) моментом соот-ветствующей нормированной случайной величины.
Действительно, по определению
Свойство 1. Асимметрия и эксцесс инвариантны относительно линейной замены случайной ве-личины:
Таким образом, асимметрия и эксцесс не меняются при сдвигах и растяжениях и их можно ис-пользовать в качестве характеристик формы распределения.
Свойство
2. Для
независимых случайных величин X1,
…, Xn
имеем
,
Заметим,
что в случае одинаково распределенных
независимых случайных величин X1,
…, Xn
асимметрия
и эксцесс их суммы стремится к нулю,
когда n →
91. Сформулируйте определение эксцесса Ex(X) случайной величины X и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
Эксцессом распределения назыв. величина:
для
норм. распределения Ex=0
(поскольку для станд. норм. распред.
N(0,1)
)
Св-ва:
1
2
i=1,…,n
им.
один дисперсию, то
В случае одинаково распред. нез. сл. вел
92 Найдите асимметрию и эксцесс равномерного распределения на отрезке [а,b].
Тк As и Ex не меняются при меняющихся заменах, а любое равномерное распределение на отрезке может быть получено линейной заменой из любого другого равномерного распределения, например, из равномерного распределения на отрезке, то достаточно посчитать As и Ex для этого распределения.
A s=μ3/σ3, σ=√D, μ3=M[(x-M(x)3]
E
x=
μ4/σ4-3
Плотность fx=1/(b-a)=1, μ3= Sb a fx(t)tdt== Sb a tdt=t2/2 в пределах от a до =(b-a)2/2
D== Sb a fx(t)t2dt=(b-a)3/3
σ=√D=√(b-a)3/3
As=μ3/σ3=((b-a)2/2)/( √(b-a)3/3 )
E x= μ4/σ4-3=((b-a)5 /5)/(( b-a)3/3)2 - 3
μ4= M[(x-M(x)4] fx(t)tdt= Sb a t4dt=(b-a)5 /5