
- •1. Что называется случайным событием, связанным с опытом? Как определяется событие, противоположное данному? Приведите примеры.
- •2.Что называется суммой и произведением событий а и в? Имеют ли смысл сумма и произведение событий, относящихся к разным опытам? Перечислите все случай наступления события
- •4. Какие события называются достоверными и невозможными и каковы их ве-
- •5.В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
- •6. Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
- •7. Докажите, что . Что обозначает событие ?
- •10 Сформулируйте и докажите теорему сложения вер-тей для любых событий a и b. Что такое правило сложения вер-тей для несовместных соб. A и b?
- •15. Какие события называются независимыми? Докажите, что если события
- •16. Что такое правило умножения вероятностей: а) для независимых событий
- •17. Как определяется независимость в случае трех событий? Рассмотрите при-
- •18. Как соотносятся понятия независимые события а и в и несовместные события а и в? Следует ли из независимости событий а,в,с независимость событий ав и ? Почему?
- •23. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
- •24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно
- •25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
- •26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
- •28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.
- •29. Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.
- •32. Выведите формулу для наиболее вероятного числа успехов в серии n испытаний по формуле Бернулли.
- •34. Может ли наиболее вероятное число успехов в схеме Бернулли отличаться от математического ожидания числа успехов на 2? Ответ обоснуйте.
- •36. Запишите интегральную приближенную формулу Лапласа и приведите основные свойства функции Лапласа φ(X) . При каких условиях данная формула дает хорошее приближение?
- •38. Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события а от вероятности p наступления a в одном опыте.
- •39. Сформулируйте и докажите предельную теорему Пуассона.
- •40. Запишите приближённые формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите примеры их применения.
- •41. Что такое сл.Величина? Дискретная величина? Что назыв функцией распределения случ. Величины? Привести пример функции распределения некоторой дискретной сл вел и построить график.
- •42. Сформулируйте основные свойства функции распределения сл величины и продемонстрируйте их на примере.
- •43. Может ли график функции распределения быть прямой линией? Ответ обоснуйте.
- •45. Дана дискретная случайная величина с законом распределения
- •47 Что называется биномиальным распределением с параметрами n и p? Приведите пример опытов, в котором определена случайная величина, распределенная по биномиальному закону.
- •52. Перечислите основные свойства математического ожидания дискретной случайной величины. Объясните, что понимается под суммой и произведением случайных величин.
- •54. Может ли математическое ожидание дискретно случайно величины, принимающей целые значения, быть числом не целым? Ответ обойснуйте.
- •58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии.
- •61. Докажите, что если X и y – независимые случайные величины, то
- •63. Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
- •70. Докажите, что коэффициент корреляции случайных величин х и у удовлетворяет условию . Что можно сказать о х и у, если ? Если ?
- •74. Перечислите основные свойства функции плотности вероятности. Чем объясняется название «плотность вероятности»?
- •82. Выведите формулу для нахождения мат. Ожидания и дисперсии случайной величины, равномерно распределенной на отрезке [a; b].
- •83. Объясните (с доказательством) вероятностный смысл параметра m в формуле для функции плотности случайной величины х, распределенной по нормальному закону.
- •84. Объясните (с доказательством) вероятностный смысл параметра σ в формуле для функции плотности случайной величины, распределенной по нормальному закону.
- •85. Докажите, что для случайной величины, распределенной по показательному закону с параметром , математическое ожидание
- •87.Что такое правило для нормального распределения? Верно ли, что для любой нормальной случайной величины х существует отрезок , для которого ? Ответ обоснуйте.
- •88. Формулируйте определение начальных моментов случайной величины. Докажите, что если х и у независимые случайные величины, то
- •89. Пусть - начальные, а - центральные моменты некоторой случайной величины.
- •90. Сформулируйте определение асимметрии As(X ) случайной величины X и укажите ее основные свойства. Что характеризует асимметрия случайной величины?
- •91. Сформулируйте определение эксцесса Ex(X) случайной величины X и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
- •92 Найдите асимметрию и эксцесс равномерного распределения на отрезке [а,b].
- •93.Что называется системой случайных величин? Сформулируйте определение функции распределения двумерного случайного вектора (х,y) и дайте его геометрическую интерпретацию.
- •94. Сформулируйте основные свойства функции распределения случайного вектора (х,у) и приведите примеры двумерной функции распределения.
- •F(X)-неубывающая функция, т.Е.
- •101.Каков смысл начальных и центральных моментов двумерного случайного вектора (X,y)?Ответ обоснуйте.
- •102.Дайте определение корреляционной и ковариационной матриц для системы случайных величин х1,х2…Хn и сформулируйте их основные свойства.
- •103. Как найти ковариацию Сov(X,y) случайных величин X и y , если известна функция плотности
- •105. Как определяются условные законы распределения для дискретных случайных величин X и y?
- •107. Как определяется условное математическое ожидание непрерывной слу-
- •108. Сформулируйте и докажите неравенство Чебышева.
- •109. Используя н-во Чебышева, сформулируйте и док-те «правило трех сигм» для произвольной св X.
- •110. Сформулируйте и докажите теорему Чебушева для бесконечной последовательности случайных величин с одинаковыми математическими ожиданиями и дисперсиями, ограниченными одним и тем же числом.
- •111 Сформулируйте и докажите теорему Бернулли (закон больших чисел).
- •112. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.
- •113. Сформулируйте центральную предельную теорему для одинаково распределенных случайных величин и приведите пример ее применения.
- •114. Используя центральную предельную теорему, обоснуйте интегральную формулу Лапласа.
70. Докажите, что коэффициент корреляции случайных величин х и у удовлетворяет условию . Что можно сказать о х и у, если ? Если ?
Определение. Коэффициентом корреляции двух случайных величин называется отношение их ковариации к произведению средних квадратических отклонений этих величин: pxy=Kxy/«сигма»х«сигма»х. Из определения следует, что рху=рух=р. Очевидно также, что коэффициент корреляции есть безразмерная величина. Отметим свойства коэффициента корреляции.
1.
Коэффициент корреляции принимает
значения на отрезке [-1;1],т.е. -1<р<1.Из
неравенства
2.
Если коэффициент корреляции двух
случайных величин равен (по абсолютной
величине) единице, то между этими
случайными величинами существует
линейная функциональная зависимость:
71. Чему равен ρ(X,Y) и Cov(X,Y) при условии независимости случайных величин X, Y ? Что можно сказать о ρ(X, Y), если Y=a+bX, где a и b – некоторые числа (b≠0)? Ответ обоснуйте.
Если X и Y независимые случайные величины, то Cov(X, Y) = M(X,Y) – M(X)M(Y) = M(X)M(Y) - M(X)M(Y) = 0
Если
(β≠0),
то
Док-во: Cov(X,Y) = Cov(X, α + βX) = M (X(α+βX)) – M(X)M(α+βX) = M(Xα+βX2) - M(X)(M(α) + M(βX)) = M(Xα) + M(βX2) – αM(X) – β(M(X))2 = β(M(X2) – (M(X))2) = βD(X)
тоесть ч.т.д.
72. Дайте определение непрерывной случайное велчини X. Чему в этом случае равна вероятность P(X=a), где а – определённое число? Следует ли из равенства P(X=a)=0 для непрерывной случайное величины X, что событие X=a никогда не наступает?
Случайная величина X называется непрерывной, если её функция распределения F(X) непрерывна в любой точке X. P(X=a), где а – определённое число, есть вероятность каждого и отдельного значения. P(X=a)=0, т.е. вер-ть каждого отдельного значения равна нулю. Однако это не означает, что событие Х=а невозможно. В результате испытания случ. величина обязательно примет одно из возможных значений; в частности, это значение может оказаться равным а.
73. Какое распределение называется абсолютно непрерывным? Что такое плотность распределения и какова ее связь с функцией распределения? Может ли абсолютно непрерывная случайная величина иметь разрывную функцию плотности f (x)? Ответ обоснуйте.
Случайная величина X называется абсолютно непрерывной, если найдется неотрицательная функция f(x), называемая плотностью распределения, такая, что для a < b вероятность попадания X в промежуток [a, b] получается путем интегрирования данной функции
Для функции распределения F(x) имеем
Плотность распределения обладает следующими свойствами:
1.
,
(неотрицательность).
2.
(условие нормировки).
3.
в точке непрерывности f(x).
Математическое
ожидание непрерывной функции
находится
пу-тем интегрирования произведения
данной функции и плотности распределения:
Произвольная случайная величина X называется сосредоточенной на промежутке [a, b], если вероятность попадания X в данный промежуток равна 1.
Плотность распределения абсолютно непрерывной случайной величины, сосредоточенной на промежутке [a, b], равна 0 вне [a, b].
Функцию распределения F(x) абсолютно непрерывной случайной величины, сосредоточенной на промежутке [a, b], можно представить в виде