
АЗОТ
История
Название образовано от др.-греч. ἄζωτος — безжизненный, лат. Nitrogenium «рождающий селитры»
В 1772 году Генри Кавендиш провёл следующий опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.
Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным). Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота.
Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.
В 1772 году азот (под названием «испорченного воздуха») как простое вещество описал Даниэль Резерфорд, он опубликовал магистерскую диссертацию, где указал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Именно Даниэль Резерфорд и считается первооткрывателем азота. Однако и Резерфорд был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.
В дальнейшем азот был изучен Генри Кавендишем. Так же он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон.
Электронное строение
Конфигурация: 1s22s22p3; степень окисления от + 5 до — 3;
Нахождение в природе
В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота). А в связанном виде — в состав двух селитр: натриевой NaNO3 (встречается в Чили, отсюда название чилийская селитра) и калиевой KNO3 (встречается в Индии, отсюда название индийская селитра) — и в состав ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом. Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами. Превращения соединений азота в живых клетках — важнейшая часть обмена веществ у всех организмов.
Изотопы
Природный азот состоит из двух стабильных изотопов 14N — 99,635 % и 15N — 0,365 %.
Искусственно получены четырнадцать радиоактивных изотопов азота с массовыми числами от 10 до 13 и от 16 до 25. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13N имеет период полураспада 10 мин.
Азот n0
Физические св-ва
При нормальных условиях азот это бесцветный газ, не имеет запаха, мало растворим в воде (2,3 мл/100г при 0 °C, 0,8 мл/100 г при 80 °C), плотность 1,2506 кг/м³ (при н.у.).
В жидком состоянии (темп. кипения −195,8 °C) — бесцветная, подвижная, как вода, жидкость. Плотность жидкого азота 808 кг/м³. При контакте с воздухом поглощает из него кислород.
При −209,86 °C азот переходит в твердое состояние в виде снегоподобной массы или больших белоснежных кристаллов. При контакте с воздухом поглощает из него кислород, при этом плавится, образуя раствор кислорода в азоте.
Строение молекулы
Азот в свободном состоянии существует в форме двухатомных молекул N2, электронная конфигурация которых описывается формулой σs²σs*2πx, y4σz², что соответствует тройной связи между молекулами азота N≡N (длина связи dN≡N = 0,1095 нм). Вследствие этого молекула азота крайне прочна, для реакции диссоциации N2 ↔ 2N изменение энтальпии в реакции ΔH°298=945 кДж/моль[4], константа скорости реакции К298=10−120, то есть диссоциация молекул азота при нормальных условиях практически не происходит (равновесие практически полностью сдвинуто влево). Молекула азота неполярна и слабо поляризуется, силы взаимодействия между молекулами очень слабые, поэтому в обычных условиях азот газообразен.
Причины химической инертности
Первая причина химической инертности азота в обычных условиях - особо прочное сцепление его атомов в молекуле N2.
Молекула азота является к тому же и плохим акцептором электронов.(нет пустых орбиталей)
молекула азота прочнее молекулы кислорода или хлора, чем и обусловлена значительная инертность азота в химических реакциях.
Получение
В лабораториях его можно получать по реакции разложения нитрита аммония:
Наиболее чистый азот можно получить разложением азидов металлов:
В промышленности молекулярный азот получают фракционной перегонкой жидкого воздуха. Этим методом можно получить и «атмосферный азот». Также широко применяются азотные установки и станции, в которых используется метод адсорбционного и мембранного газоразделения.
Химические св-ва
Т.к. азот-неметалл. Проявляет окислительные св-ва:
Ввиду своей значительной инертности азот при обычных условиях реагирует только с литием:
При нагревании он реагирует с некоторыми другими металлами и неметаллами, также образуя нитриды:
Наибольшее практическое значение имеет нитрид водорода (аммиак) NH3, получаемый взаимодействием водорода с азотом.
N2+3H2=Mg3N2
Восстановительные
N2+F2=2NF3 (эл.разряд)
N2+O2=2NO(2000 оC,эл.разряд)
Нитриды
Нитриды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4).
Физические св-ва:
Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.
Химические св-ва:
По типу хим. связи нитриды делят на ионные, ковалентные и металлоподобные (ионно-ковалентно-металлические). Атомы азота в нитридах могут принимать электроны партнера (образуется стабильная электронная конфигурация s2p6)или отдавать электрон партнеру (стабильная конфигурация sp3). В первом случае соед. обладают четко выраженной ионной связью, во втором-типично металлич., причем в обоих случаях им сопутствует определенная доля ковалентной составляющей. Ковалентная связь является основной в соединениях азота с бором и кремнием.
Нитриды с преим. ионной связью образуют металлы I и II гр. периодич. системы, атомы которых имеют внешние s-электроны. Эти нитриды имеют составы, отвечающие обычным валентным соотношениям, что обусловливает их ионный характер (они подвергаются гидролизу с выделением NH3, обладают высоким электрич. сопротивлением, проявляют полупроводниковые св-ва).
Li3N + 3H2O = 3LiOH + NH3
К ковалентным нитридам относят нитрид бора, нитрид кремния, а также нитрид алюминия, нитриды галлияи индия. Ковалентные нитриды-диэлектрики; полупроводники.
Нитриды с преим. металлической связью образуют переходные металлы. Эти соединения характеризуются высокой электрич. проводимостью и ее положительным температурным коэф., высокими т-рами плавления, твердостью, высокой энтальпией образования.
Мех. св-ва нитридов зависят от прочности хим. связи, степени ее ковалентности, а также от структуры (величины зерен, состояния границ зерен, степени дефектности кристаллич. решетки). Большинство нитридов очень твердые и хрупкие в-ва, их пластич. деформация возможна только при высоких т-рах и напряжениях.
При нагр. на воздухе и в среде О2 нитриды разрушаются с образованием оксидов и выделением в осн. N2.
2Li3N = 6Li + N2
Нитриды бора, Si, Al, In, Ga и переходных металлов IV гр. устойчивы при нагр. в вакууме, нитриды элементов V, VI и VIII гр. разлагаются с выделением N2 и последоват. образованием низших нитридов и твердых р-ров азота в металлах.
P3N5 = 3PN + N2
Нитриды металлов I и II гр. легко гидролизуются, разлагаются минер. к-тами и р-рами щелочей.
Li3N + 3H2O = 3LiOH + NH3
Нитриды переходных металлов, Al, In, Ga, а также В и Si устойчивы к действию большинства к-т и щелочей, не взаимод. с водой.
Получают нитриды, из элементов при высоких т-рах в атмосфере N2
3Ca+N2=Ca3N2
или NH3,
3Zn + 2NH3(г)
= Zn3N2
+ 3H2 или
а также восстановлением оксидов и галогенидов металлов в присут. азота.
Восстановление оксидов в присут. азота с образованием нитридов происходит по схеме:
М'-металл-восстановитель, Х-неметаллич. восстановитель (углерод, кремний, бор и т.д.).