
- •1. Информация о дисциплине
- •1.2. Содержание дисциплины и виды учебной работы
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •Раздел 1. Система воздухоснабжения (26 часов).
- •Раздел 2. Компрессорные станции. (28 часов).
- •Раздел 3. Система технического водоснабжения (28 часов)
- •Раздел 4. Оборотные системы водоснабжения, (28 часов).
- •Раздел 5. Системы газоснабжения (28 часов)
- •Раздел 6. Системы холодоснабжения (28 часов)
- •Раздел 7. Системы обеспечения продуктами разделения воздуха (26 часов)
- •2.2. Тематический план дисциплины
- •Для студентов заочной формы обучения
- •2.3. Структурно - логическая схема дисциплины
- •9. Контроль знаний студентов
- •9.1. Формы текущего контроля по дисциплине
- •9.2. Форма промежуточной аттестации по дисциплине
- •Ранжирование результатов
- •10. Информационные ресурсы дисциплины
- •10.1. Библиографический список
- •15. Поршневые компрессоры: учеб. Пособие для вузов / под общей ред. Б.С. Фотина. - л.: Машиностроение, Ленингр. Отд-ние, - 1987. - 572 с.
- •3.2. Опорный конспект
- •Введение
- •Вопросы для самопроверки
- •1. Охарактеризуйте современные масштабы и перспективы
- •Раздел 1. Система воздухоснабжения
- •1.1. Схемы воздухоснабжения
- •1.1.1. Основные потребители сжатого воздуха на промпредприятии
- •Раздел 2 компрессорные станции
- •2.4. Вспомогательное оборудование компрессорных станций.
- •2.5. Воздухопроводы
- •2.6. Компоновка компрессорной станции
- •Вопросы для самопроверки
- •2.6. Компрессорные машины
- •2.6.1. Классификация компрессорных машин
- •2.3.2. Выбор типа компрессоров
- •Вопросы для самопроверки Вопросы для самопроверки
- •Раздел 3. Система технического водоснабжения
- •3.1. Системы водоснабжения
- •3.1.1. Схемы технического водоснабжения
- •3.1.2. Расходы воды
- •3.2. Прямоточная система водоснабжения
- •Раздел 4. Оборотная система водоснабжения
- •4.2. Градирни
- •4.3. Брызгальные бассейны
- •4.4. Очистка сточных вод
- •Вопросы для самопроверки
- •Раздел 5. Система газоснабжения
- •5.1. Системы топливоснабжения предприятий
- •5.1.1. Топливный баланс промпредприятия
- •5.1.2. Топливоснабжение при твердом топливе
- •5.1.3. Топливоснабжение при жидком топливе
- •5.2. Состав и схемы газоснабжения
- •5.2.1. Основные характеристики горючих газов
- •5.2.3. Схема газоснабжения
- •5.2.4. Газопроводы
- •Рекомендуемые скорости газов в газопроводах низкого давления
- •5.3. Устройства и сооружения систем газоснабжения
- •5.3.1. Газораспределительные станции
- •5.3.2. Газорегуляторные пункты и установки природного газа
- •5.3.3. Газосмесительные станции
- •5.3.4. Газоповысительные станции
- •Вопросы для самопроверки
- •Раздел 6. Системы холодоснабжения
- •6.1. Производство искусственного холода
- •6.1.1. Области применения низких температур
- •6.1.2. Потребители искусственного холода
- •6.1.3. Способы производства искусственного холода
- •6.2. Системы охлаждения
- •6.2.1. Системы непосредственного охлаждения
- •6.2.2. Системы косвенного охлаждения
- •6.2.3. Способы отвода теплоты от потребителей холода
- •6.3. Холодильные машины
- •6.3.1. Определение расчетной потребности в холоде
- •6.3.2. Выбор холодильного оборудования
- •6.3.3. Компоновка холодильного оборудования
- •Вопросы для самопроверки
- •Раздел 7. Системы обеспечения предприятий продуктами разделения воздуха
- •7.1. Продукты разделения воздуха
- •7.1.1. Использование в промышленности продуктов разделении воздуха
- •7.2.2. Методы промышленного получения продуктов разделения воздуха
- •7.2. Ожижители газов
- •5.2.1. Структура ожижителей газов
- •7.2.2. Ожижитель Линде
- •7.2.3. Ожижитель Капицы
- •7.3. Воздухоразделительные установки
- •7.3.1. Низкотемпературная ректификация воздуха
- •7.3.2. Расчет станций разделения воздуха
- •7.3.3. Оборудование воздухоразделительных установок
- •Вопросы для самопроверки
- •Заключение
- •3.3. Глоссарий (краткий словарь основных терминов и положений)
- •3.4. Методические указания к выполнению практических занятий
- •3.5. Методические указания к выполнению лабораторных работ.
- •Охрана труда и техника безопасности при проведении лабораторных работ
- •Библиографический список для лабораторных работ
- •Лабораторная работа №1 получение напорной характеристики центробежного вентилятора
- •1. Цель работы
- •1.2. Основные теориетические понятия
- •1.3. Описание лабораторной установки
- •1.4. Порядок выполнения работы
- •1.5. Содержание отчета
- •2.3. Описание лабораторной установки
- •2.4. Порядок выполения работы
- •2.5. Содержание отчета
- •Лабораторная работа №3 измерение расхода воздуха методом переменного давления
- •3.1. Цель работы
- •3.2. Основные теоретические положения
- •Порядок определения массового расхода
- •5.1. Описание лабораторной установки
- •5.2.. Порядок выполнения работы
- •5.3. Содержание отчета
- •Основные технические и метрологические характеристики нормирующих преобразователей
- •Расчет погрешностей
- •4. Блок контроля освоения дисциплины
- •4.1. Задание на контрольную работу и методические указания к ее выполнению
- •Задача №2
- •1.1. Параметры атмосферного воздуха
- •1.2. Характеристики вентиляторных градирен
- •1.3. Стальные бесшовные трубы
- •1.4. Характеристики центробежных насосов консольного типа
- •1.5. Среднее расходы воздуха различными потребителями
- •1.6. Средние значение коэффициента одновременности к0
- •1.7. Поршневые воздушные крейцкопфные компрессоры с прямоугольным расположением цилиндров типа вп (гост 23680-79)
- •4.2. Задание на курсовой проект и методические указания к его выполнению Введение
- •1.Тематика курсовых проектов
- •Принципы формирования тем индивидуальных заданий
- •Задание на курсовой проект
- •2.Расчетная часть
- •Требования к пояснительной записке
- •Составление функциональной схемы системы водоснабжения
- •Расчет режима работы теплонасосной установки и выбор тепловых насосов
- •Выбор схем включения испарителей и конденсаторов тепловых насосов
- •2.5. Расчет термодинамического цикла теплового насоса
- •2.6. Тепловой расчет и подбор теплообменников
- •2.8. Расчет диаметров трубопроводов и подбор насосов
- •2.9. Разработка принципиальной схемы системы водоснабжения
- •2.10. Компоновка оборудования теплонасосной установки
- •2.11. Расчет показателей экономичности теплонасосной установки
- •3. Графическая часть
- •Литература
- •Приложение 2
- •2.1. Характеристики парокомпрессионных тепловых насосов
- •2.2. Основные параметры водоводяных секционных подогревателей
- •2.3. Параметры атмосферного воздуха
- •2.4. Характеристики вентиляторных градирен
- •2.5. Характеристика стальных бесшовных труб
- •2.6. Характеристики центробежных насосов
- •2.7. Дополнительные технические решения, разрабатываемые на принципиальной схеме системы водоснабжения.
- •2.8. Примерный состав вспомогательных помещений машинного отделения теплонасосной установки
- •Оглавление курсового проекта
- •4.3. Текущий контроль
- •4.3.1. Тестовые задания тест №1
- •Тест №2
- •Тест №3
- •Тест №4
- •Тест №5
- •4.3.2. Вопросы к зачету
- •4.4. Итоговый контроль
- •4.4.1. Вопросы к экзамену
- •Содержание
- •1. Информация о дисциплине
- •2. Рабочие учебные материалы
- •3. Информационные ресурсы дисциплины
- •4. Блок контроля освоения дисциплины
Раздел 4. Оборотная система водоснабжения
Оборотные системы водоснабжения применяют, когда в районе строительства промышленного предприятия дебит естественного источника водоснабжения недостаточен. В отдельных случаях к оборотному водоснабжению приходится прибегать при большом загрязнении водоемов и сильном образовании шуги при трудностях борьбы с ней, также для удовлетворения требований Госрыбнадзора. Это прежде всего относится к мощным конденсационным электростанциям с большим расходом охлаждающей воды, а также к ТЭЦ, которые территориально больше тяготеют к тепловым потребителям, чем к источнику водоснабжения.
?
.
В оборотной системе вода, нагретая в конденсаторах турбин и в других теплообменниках, используется повторно после ее охлаждения в охладительных устройствах. Охлаждение воды может осуществляться в естественных и искусственных водохранилищах, в градирнях и брызгальных бассейнах.
В России примерно 1/3 всей установленной мощности тепловых электростанций работает на хранилищах-охладителях. Что касается промышленных тепловых электростанций, то около 60% установленной мощности их работает на оборотном водоснабжении, причем в качестве охладителей наибольшее распространение получили градирни.
Особенностями работы оборотной системы водоснабжения по сравнению с прямоточной являются:
1) более высокая температура охлаждающей воды, вследствие чего вакуум в конденсаторах турбин на 2 – 3% ниже, чем при прямоточном водоснабжении, во все времена года;
2) зависимость работы большинства охладительных устройств от метеорологических условий (температура и относительная влажность воздуха, скорость и направление ветра);
3) необходимость восполнения потерь воды в охладительных устройствах.
Потери воды в оборотной системе вызываются испарением нагретой воды, механическим уносом (особенно в брызгальных бассейнах и открытых градирнях), фильтрацией воды в грунт и через плотину (при искусственных водохранилищах-охладителях), продувкой охладительных устройств (для поддержания карбонатной жесткости циркуляционной воды в допустимых пределах).
Количество воды, испаряющейся в брызгальных бассейнах и градирнях, примерно равно расходу пара в конденсаторе, так как при установившемся тепловом равновесии теплота конденсации пара в конденсаторе должна быть равна теплоте испарения воды в охладителе.
Охлаждение циркуляционной воды в градирнях и брызгальных бассейнах происходит в основном за счет ее испарения. При относительной влажности воздуха менее 100% теоретически можно охладить воду в охладителе до температуры мокрого термометра. При относительной влажности воздуха равной 100%, т. е. при достижении насыщения воздуха водяными парами (tм = tсух), охладить воду даже теоретически можно лишь до температуры окружающего воздуха.
В действительности температура охлаждающей воды всегда выше теоретического предела охлаждения на некоторую величину µ, °С, называемую пределом охлаждения и зависящую от типа и условий работы охладительного устройства.
4.1. Водохранилища – охладители
Искусственные водохранилища-охладители создаются путем устройства плотины на реке, дебит которой недостаточен для использования ее в качестве источника прямоточного водоснабжения. Глубина водохранилищ-охладителей при летних уровнях воды принимается не менее 3,5м на 80% площади зоны циркуляции водохранилища.
Охлаждение воды в водохранилищах происходит как за счет испарения части циркуляционной воды, так и за счет конвективного теплообмена нагретой воды с воздухом и перемешивания нагретой воды с поступающей в водохранилище холодной водой из природных источников. Соотношения между количествами теплоты, отданными водой в водохранилище испарением и конвенцией, существенно изменяются от времени года. Зимой преобладающим является конвективный теплообмен, летом – испарительное охлаждение.
Восполнение потерь воды в водохранилищах-охладителях может осуществляться либо за счет непрерывного притока воды впадающих в водохранилище ручьев и рек, либо путем накопления запаса воды в них в период весенних паводков.
Схема снабжения конденсаторов водой при водохранилищном охлаждении в основном аналогична прямоточной (рис. 2.5). Насосы могут устанавливаться как на берегу водохранилища, так и непосредственно в турбинном цехе станции.
В связи с тем, что в водохранилищах-охладителях циркулирует одна и та же вода (если пренебречь притоком свежей воды), помимо механической очистки воды перед насосами часто необходимо осуществлять специальную ее обработку, особенно в весенне-летние периоды для предотвращения обрастания конденсаторных трубок микроорганизмами.
Необходимым условием работы водохранилищ-охладителей, как и других охладительных устройств при оборотной системе водоснабжения, является равновесие между количеством теплоты, воспринятой водой в конденсаторе и отданной водой окружающей среде в охладителе. Выражением этого условия является равенство:
Δtк=Δtохл, (4.1.)
где Δtк – нагрев воды в конденсаторе, °С; Δtохл – охлаждение воды в водохранилище (зона охлаждения), °С.
В результате слива нагретой воды в водохранилище-охладитель температура воды в нем повышается по сравнению с температурой воды в естественном (первоначальном) состоянии. Превышение температуры охлажденной воды в водохранилище над температурой ее в первоначальном состоянии называют величиной недоохлаждения.
Чем меньше величина недоохлаждения, тем ниже температура воды, поступающей в конденсатор, тем глубже вакуум в конденсаторе. Величина недоохлаждения является своего рода характеристикой водохранилища как охладительного устройства и зависит от его емкости, площади зеркала испарения, очертания берегов и других факторов.
В теплообмене участвует только часть поверхности водохранилища, так называемая активная поверхность, в которой струи воды движутся параллельно от места сброса к месту забора воды.
Для увеличения активной поверхности естественных и искусственных водохранилищ-охладителей устраиваются специальные струенаправляющие насыпные дамбы или шпунтовые ряды (рис.2.5).
Рис 4.1.Схема прдового водоснабжения с сифонным устройством:
1 – направляющая дамба; 2 – водоприемники; 3 – перепускной канал; 4 – приемные самотечные каналы; 5 – переключательный колодец; 6 – сливные (сифонные) колодцы; 7 – циркуляционные насосы; 8 – приемные колодцы; 9 – конденсаторы; 10 – сливной канал.
Расчет водохранилищ-охладителей заключается в определении необходимой полной площади поверхности или удельной площади поверхности водохранилища-охладителя, расхода воды в сутки или в час при заданных условиях работы станции (при заданной температуре воды на входе в конденсатор).
Аналитический расчет водохранилищ-охладителей из-за множества факторов, которые оказывают влияние на их работу и учесть которые не всегда возможно, представляет собой весьма сложную задачу.
Ориентировочно необходимую площадь поверхности водохранилища-охладителя можно оценить по формуле
F=(7…10)Nк, (4.2.)
где Nк – полная конденсационная мощность станции при летнем режиме работы, кВт.