Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сводные лекции 1.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.62 Mб
Скачать

2.3. Скорость звука.

Скорость звука – скорость перемещения в среде упругой волны при условии, что форма ее профиля остается неизменной. Напр., для плоской волны, бегущей без изменения формы со скоростью с в направлении оси x, звуковое давление можно записать в виде: р=р(х-сt), где t – время, а функция р дает форму профиля волны. Для гармонич. волны р= А cos( tkx + ). Звуковая волна выражается через частоту и волновое число k формулой . Скорость гармоничной волн называется также фазовой скоростью звука. В средах, в которых форма волн произвольной формы меняется при распространении, гармоничные волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для различных частот, т.е. имеет место дисперсия скорости звука. В этих случаях пользуются также понятием групповой скорости. При больших амплитудах упругой волны появляются нелинейные эффекты, приводящие к изменению формы любых волн, в т.ч. гармонических, так что понятие скорости звука теряет определенность. В этом случае скорость распространения каждой точки профиля волны зависит от амплитуды давления в этой точки. Эта скорость растет с ростом давления в данной точке профиля, что приводит к искажению формы волны.

Скорость звука в газах и жидкостях. В газах и жидкостях звук распространяется в виде объемных волн разрежения – сжатия, причем процесс происходит обычно адиабатически, т.е. изменение температуры в звуковой волне не успевает выравниваться, т.к. за ½ периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным).

Скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах. В таблице 2.1 приведены значения скорости звука для некоторых газов и жидкостей.

Таблица 2.1

Скорость звука в газах при 0

Скорость звука в жидкостях при 20С

Газ

с, м/с

Жидкость

с, м/с

Азот

334

Вода

1490

Кислород

316

Ацетон

1190

Воздух

331

Бензол

1324

Гелий

965

Толуол

1324

Водород

1284

Спирт этиловый

1180

Неон

435

Четыреххлористый углерод

920

Метан

430

Ртуть

1453

Аммиак

415

Глицерин

1923

Углекислый газ

259

Иодистый водород

157

Скорость звука в идеальных газах при заданной температуре не зависит от давления и растет с ростом температуры как , где Т – абсолютная температура. Изменение скорости звука, отнесенное к одному градусу, равно . При комнатной температуре относительное изменение скорости звука в воздухе при изменении температуры на 1 градус составляет примерно 0,17%. В жидкостях скорость звука, как правило, уменьшается с ростом температуры, и изменение температуры на один градус составляет, напр., - 5,5 м/сград для ацетона и – 3,6 м/сград для этилового спирта. Исключением из этого правила является вода, в которой скорость звука при комнатной температуре увеличивается с ростом температуры на 2,5 м/сград, достигает максимума при температуре  74С и с дальнейшим ростом температуры уменьшается. Скорость звука в воде растет с увеличением давления примерно на 0,01% на 1 атмосферу; кроме того, скорость звука в воде растет с увеличением содержания растворенных в ней солей.

В сжиженных газах скорость звука больше, чем в газе при той же температуре. Так, например, в газообразном азоте при температуре минус 195С скорость звука равна 176 м/с, а в жидком при той же температуре минус 859 м/с; в газообразном и жидком гелии при минус 269С она равна соответственно 102 м/с и 198 м/с.

В водных растворах солей скорость звука растет с ростом концентрации по всем интервале концентраций. Таким образом, измерения скорости звука могут служить для определения и контроля концентрации компонент смесей и растворов.

Скорость звука в твердых телах. Скорость звука в изотропных твердых телах определяется модулями упругости вещества. В неограниченной твердой среде распространяются продольные и сдвиговые (поперечные) упругие волны, причем фазовая скорость звука для продольной волны равна:

, а для сдвиговой

,

где Е – модуль Юнга; - плотность вещества; G – модуль сдвига; - коэффициент Пуассона; К – модуль объемного сжатия. В металлах, где =0,3, можно проследить зависимость отношения скоростей звука по рис. 2.2.

Рис. 2.2. Зависимость соотношения скоростей продольных , поперечных , поверхностных волн и волн в стержнях (при d<<1) от коэффициента Пуассона.

Скорость распространения продольных волн всегда больше, чем скорость сдвиговых волн, а именно выполняется соотношение . Значения продольной и поперечной скорости звука для некоторых твердых тел приведены в таблице 2.2.

Таблица 2.2

Скорость звука в некоторых твердых веществах.

Материал

м/с

м/с

Сст, м/с

Бетон

4200-5300

-

-

Полистирол

2350-2380

1120

1860-2240

Железо

5835-5950

3180-3240

5000-5200

Золото

3200-3240

1200

2030

Платина

3260-3960

1670-1730

2690-2800

Свинец

1960-2400

700-790

1200-1320

Цинк

4170-4210

2440

3700-3850

Серебро

3650-3700

1600-1690

2610-2800

Углеродистые стали

5900 - 5940

3220 – 3250

5099-5177

Нержавеющие стали

5660 – 6140

3120 – 3250

5039

Титан

6100

3130

5072

Медь

4720

2440

3842

Алюминиевый сплав АМГ

6320

3190

5200

В ограниченных твердых телах, кроме продольной и поперечной волн, имеются и другие типы волн. Так, вдоль свободной поверхности твердого тела или вдоль границы его с другой средой распространяется специфический вид волн – поверхностные волны, скорость которых меньше, чем все остальные скорости звука для данного твердого тела. В пластинах, стержнях и других твердых акустических волноводах распространяются нормальные волны, скорость которых определяется не только упругими характеристиками вещества, но и геометрией тела. Так, например, скорость звука для продольной волны в стержне, поперечные размеры которого много меньше длины волны, равна: . В таблице 2.2 приведены значения скорости звука в тонком стержне для некоторых материалов.

В металлах и сплавах скорость звука существенно зависит от обработки, которой был подвергнут металл: прокат, ковка, отжиг и т.п. Частично это явление связано с дислокациями, наличие которых также влияет на скорость звука (в табл. 2.2 даны наибольшие и наименьшие значения по данным литературы). В металлах, как правило, скорость звука уменьшается с ростом температуры.