- •Розділ 1. Основи двійкової арифметики
- •Тема 1.1. Подання чисел з фіксованою комою в розрядній сітці Подання чисел в еом
- •Завдання для самоконтролю
- •Завдання для самоконтролю
- •Представлення чисел з фіксованою комою
- •Завдання для самоконтролю
- •Кодування знаків і від’ємних чисел
- •Тема для самостійного опрацювання (Лекція №1с): Виконання операцій додавання та віднімання чисел з фк
- •Алгоритми множення в еом
- •Виконання операцій зсуву
- •Завдання для самоконтролю
- •Перший основний алгоритм множення
- •Другий основний алгоритм множення
- •Третій основний алгоритм множення
- •Четвертий основний алгоритм
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №2с): Алгоритми ділення в еом
- •Тема 1.2. Виконання арифметичних операцій над числами з плаваючою комою (пк) Подання чисел з плаваючою (блукаючою) комою
- •Завдання для самоконтролю
- •Виконання операцій додавання та віднімання чисел з плаваючою комою
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №3с): Множення, ділення чисел з пк
- •Тема 2.1 Основні функції та теореми алгебри логіки
- •Основні поняття і закони алгебри логіки
- •Булеві теореми та закони
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №4с): Цифровий сигнал та способи його передачі
- •Функціонально повні системи логічних елементів
- •Структурна схема таких пристроїв має вигляд
- •Часова діаграма тактового сигналу
- •Базові логічні елементи
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №5с): Допоміжні логічні функції
- •Завдання для самоконтролю
- •Тема 2.2. Мінімізація логічних функцій Форми представлення логічних функцій
- •Завдання для самоконтролю
- •Мінімізація логічних функцій
- •Тема для самостійного опрацювання (Лекція №6с): Мінімізація логічних функцій аналітичним способом
- •Мінімізація логічних функцій методом Карно – Вейча
- •Закріплення матеріалу лекції
- •Підготовка до виконання лабораторної роботи №4
- •Розділ 3. Схемотехніка комбінаційних схем
- •Тема 3.1 Дешифратори (dc), шифратори (cd), мультиплексори (ms), демультиплексори-селектори (dm) Дешифратор (Decoder)
- •Тема для самостійного опрацювання (Лекції №8,9с): Лінійні та каскадні дешифратори Дешифратори на сіс
- •Шифратор (Coder)
- •Мультиплексор
- •Демультиплексор
- •Тема для самостійного опрацювання (Лекція №10с): Комбінаційні пристрої на імс
- •Підготовка до виконання лабораторної роботи №5
- •Завдання для самоконтролю
- •Тема 3.2. Перетворювачі кодів Перетворювачі кодів, робота, призначення
- •Тема для самостійного опрацювання (Лекція №11с): Перетворювач двійкового коду в семи сегментний для цифрової індикації
- •Перетворювач прямого коду в додатковий
- •Завдання для самоконтролю
- •Підготовка до виконання лабораторної роботи №6
Булеві теореми та закони
Усі змінні, якими оперує алгебра логіки, можуть приймати тільки два значення – 0 та 1.
В алгебрі логіки визначено:
відношення еквівалентності позначається знаком “=”;
операції: додавання, або диз’юнкція позначається знаком “ ”, “+”;
множення, або кон’юнкція позначається знаком “&”, “”, “ · ”;
заперечення або інверсія позначається надкресленням “
”,
або апострофом.
Алгебра логіки визначається наступною системою аксіом:
Закони алгебри логіки:
переставний (комутативний) закон:
;
;
сполучний (асоціативний) закон:
розподільний (дистрибутивний) закон:
закони де Моргана:
для двох змінних:
для n змінних:
закон подвійного заперечення:
;
правило склеювання:
правило поглинання:
;
;
закон ідемпотентності (повторення):
;
;
і=0,…,n
Завдання для самоконтролю
Закінчити кожний із виразі:
Довести теорему де Моргана шляхом перевірки для всіх можливих комбінацій х1 та х2. (х1=0, х2=0; х1=1, х2=0; х1=0, х2=1; х1=1, х2=1)
х2
х1
х2
х1
0
0
0
1
1
0
1
1
Спростити наступні вирази:
А)
|
В)
|
Д)
|
Ж)
|
Б)
|
Г)
|
Є)
|
З)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
