- •Розділ 1. Основи двійкової арифметики
- •Тема 1.1. Подання чисел з фіксованою комою в розрядній сітці Подання чисел в еом
- •Завдання для самоконтролю
- •Завдання для самоконтролю
- •Представлення чисел з фіксованою комою
- •Завдання для самоконтролю
- •Кодування знаків і від’ємних чисел
- •Тема для самостійного опрацювання (Лекція №1с): Виконання операцій додавання та віднімання чисел з фк
- •Алгоритми множення в еом
- •Виконання операцій зсуву
- •Завдання для самоконтролю
- •Перший основний алгоритм множення
- •Другий основний алгоритм множення
- •Третій основний алгоритм множення
- •Четвертий основний алгоритм
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №2с): Алгоритми ділення в еом
- •Тема 1.2. Виконання арифметичних операцій над числами з плаваючою комою (пк) Подання чисел з плаваючою (блукаючою) комою
- •Завдання для самоконтролю
- •Виконання операцій додавання та віднімання чисел з плаваючою комою
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №3с): Множення, ділення чисел з пк
- •Тема 2.1 Основні функції та теореми алгебри логіки
- •Основні поняття і закони алгебри логіки
- •Булеві теореми та закони
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №4с): Цифровий сигнал та способи його передачі
- •Функціонально повні системи логічних елементів
- •Структурна схема таких пристроїв має вигляд
- •Часова діаграма тактового сигналу
- •Базові логічні елементи
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №5с): Допоміжні логічні функції
- •Завдання для самоконтролю
- •Тема 2.2. Мінімізація логічних функцій Форми представлення логічних функцій
- •Завдання для самоконтролю
- •Мінімізація логічних функцій
- •Тема для самостійного опрацювання (Лекція №6с): Мінімізація логічних функцій аналітичним способом
- •Мінімізація логічних функцій методом Карно – Вейча
- •Закріплення матеріалу лекції
- •Підготовка до виконання лабораторної роботи №4
- •Розділ 3. Схемотехніка комбінаційних схем
- •Тема 3.1 Дешифратори (dc), шифратори (cd), мультиплексори (ms), демультиплексори-селектори (dm) Дешифратор (Decoder)
- •Тема для самостійного опрацювання (Лекції №8,9с): Лінійні та каскадні дешифратори Дешифратори на сіс
- •Шифратор (Coder)
- •Мультиплексор
- •Демультиплексор
- •Тема для самостійного опрацювання (Лекція №10с): Комбінаційні пристрої на імс
- •Підготовка до виконання лабораторної роботи №5
- •Завдання для самоконтролю
- •Тема 3.2. Перетворювачі кодів Перетворювачі кодів, робота, призначення
- •Тема для самостійного опрацювання (Лекція №11с): Перетворювач двійкового коду в семи сегментний для цифрової індикації
- •Перетворювач прямого коду в додатковий
- •Завдання для самоконтролю
- •Підготовка до виконання лабораторної роботи №6
Виконання операцій додавання та віднімання чисел з плаваючою комою
Алгоритм додавання/віднімання чисел з плаваючою комою будемо розглядати для k = 2, тоді операнди X та У можна записати так X = 2А х, У = 2Ву, де А, В порядок операндів; X, У, які представлені “m” розрядами; Мантиси х та у є n - розрядні правильні нормалізовані дроби, тобто 1/2≤|х|<1, 1/2≤|у|<1. Операція додавання (віднімання) з ПК здійснюється в декілька етапів:
вирівнюються порядки доданків; молодший порядок збільшується до більшого, при цьому відбувається корекція мантиси числа, яке перетворюється;
виконується перетворення мантис в додаткові коди;
виконується додавання мантис за правилами, які розглядались для чисел з ФК;
— до отриманої суми дописується порядок доданків і якщо буде потрібно виконується нормалізація результату. Можливі два випадки денормалізації:
а) денормалізація вліво відповідає переповненню розрядної сітки;
б) денормалізація вправо, яка виникає, коли у прямому коді мантиси після коми є один або декілька нульових розрядів.
Приклад 1. Потрібно додати два числа X = + 0,10101 ∙ 2101; У = - 0,11001 ∙ 2011
- Вирівнюємо порядок числа У до порядку числа Х
РХдоп.м = 00,101 + РУдоп.м = 11,101 00, 010 |
Рх > Ру на 2, тому виконуємо зсув вправо на 2 розряди мантиси числа У. У = - 0,0011001 ∙ 10+101 |
- Додаємо мантиси чисел X та У в модифікованому додатковому коді:
Хдм = 00,1010100
+
Улм = 11,1100111
00,0111011 це прямий код додатної мантиси.
Результат отримали в ненормалізованій формі, оскільки після коми розряд мантиси має нульове значення. Для нормалізації цього числа необхідно зсунути всі розряди мантиси вліво на один розряд та зменшити на одиницю значення порядку. Отже результат: 00,1110110 • 2100
Цей результат буде розміщено в розрядній сітці обчислювального пристрою.
Приклад 2: Додати двійкові числа: А = + 0,10100*2101 та В = - 0,10110*2100 .
- Вирівнюємо порядок числа В до порядку числа А
РАдоп.м = 00,101 + РВдоп.м = 11,100 00, 001 |
РА > РВ на 1, тому виконуємо зсув мантиси числа В вправо на 1 розряд. В = - 0,010110 ∙ 2101 |
- Додаємо мантиси чисел X та У в модифікованому додатковому коді:
Хдм = 00,10100
+
Улм = 11,10101
00,01001 це прямий код додатної мантиси.
Результат отримали в ненормалізованій формі, оскільки після коми розряд мантиси має нульове значення. Для нормалізації цього числа необхідно зсунути всі розряди мантиси вліво на один розряд та зменшити на одиницю значення порядку. Отже результат: 00,1001*2100
Завдання для самоконтролю
Додати A = - 0,1101*2101 i B = + 0,1100*2011
Додати два числа у форматі з плаваючою комою:
V=6810 та W=29,12510 б)Х= -93,510 та У=76,2510
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
