- •Розділ 1. Основи двійкової арифметики
- •Тема 1.1. Подання чисел з фіксованою комою в розрядній сітці Подання чисел в еом
- •Завдання для самоконтролю
- •Завдання для самоконтролю
- •Представлення чисел з фіксованою комою
- •Завдання для самоконтролю
- •Кодування знаків і від’ємних чисел
- •Тема для самостійного опрацювання (Лекція №1с): Виконання операцій додавання та віднімання чисел з фк
- •Алгоритми множення в еом
- •Виконання операцій зсуву
- •Завдання для самоконтролю
- •Перший основний алгоритм множення
- •Другий основний алгоритм множення
- •Третій основний алгоритм множення
- •Четвертий основний алгоритм
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №2с): Алгоритми ділення в еом
- •Тема 1.2. Виконання арифметичних операцій над числами з плаваючою комою (пк) Подання чисел з плаваючою (блукаючою) комою
- •Завдання для самоконтролю
- •Виконання операцій додавання та віднімання чисел з плаваючою комою
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №3с): Множення, ділення чисел з пк
- •Тема 2.1 Основні функції та теореми алгебри логіки
- •Основні поняття і закони алгебри логіки
- •Булеві теореми та закони
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №4с): Цифровий сигнал та способи його передачі
- •Функціонально повні системи логічних елементів
- •Структурна схема таких пристроїв має вигляд
- •Часова діаграма тактового сигналу
- •Базові логічні елементи
- •Завдання для самоконтролю
- •Тема для самостійного опрацювання (Лекція №5с): Допоміжні логічні функції
- •Завдання для самоконтролю
- •Тема 2.2. Мінімізація логічних функцій Форми представлення логічних функцій
- •Завдання для самоконтролю
- •Мінімізація логічних функцій
- •Тема для самостійного опрацювання (Лекція №6с): Мінімізація логічних функцій аналітичним способом
- •Мінімізація логічних функцій методом Карно – Вейча
- •Закріплення матеріалу лекції
- •Підготовка до виконання лабораторної роботи №4
- •Розділ 3. Схемотехніка комбінаційних схем
- •Тема 3.1 Дешифратори (dc), шифратори (cd), мультиплексори (ms), демультиплексори-селектори (dm) Дешифратор (Decoder)
- •Тема для самостійного опрацювання (Лекції №8,9с): Лінійні та каскадні дешифратори Дешифратори на сіс
- •Шифратор (Coder)
- •Мультиплексор
- •Демультиплексор
- •Тема для самостійного опрацювання (Лекція №10с): Комбінаційні пристрої на імс
- •Підготовка до виконання лабораторної роботи №5
- •Завдання для самоконтролю
- •Тема 3.2. Перетворювачі кодів Перетворювачі кодів, робота, призначення
- •Тема для самостійного опрацювання (Лекція №11с): Перетворювач двійкового коду в семи сегментний для цифрової індикації
- •Перетворювач прямого коду в додатковий
- •Завдання для самоконтролю
- •Підготовка до виконання лабораторної роботи №6
Тема 1.2. Виконання арифметичних операцій над числами з плаваючою комою (пк) Подання чисел з плаваючою (блукаючою) комою
Представлення числа з плаваючою комою в загальному вигляді має вид:
X=SP*q ; |q|<1 Х=2Р*q ; |q|<1 |
q – мантиса числа Х; p – порядок; s – основа характеристики (системи числення)
Для двійкових чисел вираз буде записаний так |
Розглянемо приклад: Нехай слово має 32 2х-розрядів, а число “Х” зображується у машині 2м словом а0в0в1…в6а1а2…а24 та має такий формат
0 |
1 |
2 |
7 |
8 |
9 |
|
|
|
|
|
|
|
31 |
а0 |
в0 |
в1… |
в6 |
а1 |
а2 |
… |
… |
… |
… |
… |
… |
… |
а24 |
Знак |
Знак порядку |
Порядок |
Мантиса |
||||||||||
в0…в6 – використовуються для представлення порядку, при цьому розряд в0 зображує знак порядку, розряди в1…в6 – модуль порядку.
Розряди а0…а24 – зображують мантису, де а0 – знак мантиси.
Двійкове число Х=2Р*q називають нормалізованим, якщо у старшому розряді мантиси записана “1”.
Порядок (в0…в6) має 7 розрядів, то порядок може бути від -63 до 63
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|
Тому у розрядній сітці може бути представлено число від -263 до -264 і від 263 до 2-64. |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
=63 |
Це значно перевищує діапазон чисел з фіксованою комою для 32-розрядних слів.
Приклад 1. Представити у формі з блукаючою комою числа 15810 та 1011112
15810=103*0.15810=104*0.015810=105*0.0015810
1011112=2110*0.1011112=2111*0.01011112=21000*0.001011112
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Знак |
Знак порядку |
Порядок |
Мантиса |
||||||||||||||||||||
Нормалізована форма ↑
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Знак |
Знак порядку |
Порядок |
Мантиса |
||||||||||||||||||||
Ненормалізована форма ↑
