Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лучевые поражения.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
512 Кб
Скачать

Физическая, физико-химическая, химическая и биологическая стадии в действии ионизирующих излучений. Молекулярные механизмы лучевого поражения биосистем

В действии ионизирующих излучений на биологический объект выделяют несколько стадий.

В стадии физических процессов образуются ионизированные и возбужденные атомы и молекулы, случайным образом распределенные в веществе, поскольку вероятность поглощения энергии тем или иным атомом, из которых построены биологические молекулы, практически одинакова.

На стадии физико-химических явлений поглощенная энергия мигрирует по макромолекулярным структурам и распределяется между отдельными биомолекулами, что сопровождается разрывами химических связей там, где эти связи менее прочны. Поэтому, хотя на физической стадии поглощение энергии различными молекулярными структурами было не избирательным, по окончании физико-химической стадии разрывы связей обнаруживаются преимущественно в определенных структурах. Разрывы химических связей приводят к образованию свободных радикалов, отличающихся очень высокой химической активностью.

Во время химической стадии образовавшиеся свободные радикалы вступают в химические реакции как между собой, так и с другими молекулами.

Названные эффекты могут быть следствием поглощения энергии излучения самими макромолекулами белков, нуклеопротеидов, структурами внутриклеточных мембран. В этом случае говорят о прямом действии излучения. Энергия излучения может также поглощаться молекулами воды, которые подвергаются радиолизу. Повреждение биомолекул химически высокоактивными продуктами радиолиза воды называют непрямым действием излучения. Рассмотренные стадии в действии излучений называются первичными.

В липидной фракции в присутствии кислорода вследствие активации свободнорадикальных процессов накапливаются продукты перекисного окисления, в первую очередь перекиси и гидроперекиси ненасыщенных жирных кислот. Некоторые продукты перекисного окисления липидов (гидроперекиси, перекиси, эпоксиды, альдегиды, кетоны) обладают выраженными радиомиметическими свойствами: под их влиянием в клетках возникают повреждения, во многом сходные с теми, которые вызываются самим облучением. Такие продукты получили наименование первичных радиотоксинов. Липидные радиотоксины, в частности, изменяют свойства внутриклеточных мембран, их проницаемость, способствуют высвобождению ферментов. Они нарушают регуляцию биохимических процессов, вызывают глубокие нарушения ультраструктуры клеток.

Под результатом прямого действия ионизирующего излучения понимают изменения молекул, возникшие в результате поглощения энергии излучения самими молекулами, а к проявлениям непрямого действия ионизирующих излучений относят изменения молекул, вызванные действием продуктов радиолиза воды.

Повышенное содержание кислорода в организме усиливает проявления биологического действия ионизирующих излучений.

Реакции клеток на облучение. Биологическое усиление радиационного поражения. Формы лучевой гибели клеток

В живой клетке постоянно осуществляется обмен веществ с внешней средой, между отдельными внутриклеточными структурами. Молекулярные повреждения, возникшие в клетках на начальных стадиях действия ионизирующих излучений, изменяют ход обменных процессов, осуществляющихся при участии поврежденных структур. Нарушение метаболических процессов в свою очередь приводит к увеличению выраженности молекулярных повреждений в клетке. Этот феномен получил наименование биологического усиления первичного радиационного повреждения. Наиболее значимы для судьбы облученной клетки изменения нуклеинового обмена, белкового обмена, окислительного фосфорилирования. Повреждение нуклеиновых кислот из всех типов макромолекул имеет наибольшее значение для судьбы облученной клетки.

После облучения в делящихся клетках замедляется синтез ДНК. Активируются эндо- и экзонуклеазы, вследствие чего повышается ферментативный гидролиз молекул ядерной ДНК; увеличение проницаемости внутриклеточных мембран способствует поступлению ферментов во внутриядерное пространство, повышает доступность ядерной ДНК для ферментативной атаки. Распад ДНК приводит к повышению содержания в тканях полидезоксинуклеотидов. В крови и моче облученных нарастает количество нуклеотидов и продуктов их разрушения – азотистых оснований, нуклеозидов, мочевой кислоты и др.

Синтез РНК снижается в меньшей степени, чем ДНК. Отчасти нарушение синтеза РНК зависит от повреждения матричных структур ДНК. Распад комплекса ДНК – гистон облегчает доступ мутагенов к освобожденным от связей с белком участкам ДНК. Повреждение мембран лизосом и выход за их пределы протеаз способствуют в ранние сроки после облучения активации процессов протеолиза.

Интенсивность потребления кислорода существенно не изменяется. В клетках кроветворных тканей угнетение окислительного фосфорилирования (тканевая гипоксия) выявляется уже через 2–4 ч после облучения, параллельно с глубоким распадом ДНК.

Одновременно в ответ на возникшие первичные повреждения в облученной клетке активируются репарационные системы, деятельность которых направлена на устранение возникших повреждений. Наиболее важной из них является система ферментативной репарации повреждений ДНК. В клетке существуют различные системы, способные репарировать большинство нарушений структуры ДНК, связанных с повреждением одной из комплементарных цепей, и даже значительную часть повреждений, захватывающих обе нити. Однако избыточная активность ферментов, обеспечивающих такую репарацию, может иногда привести к утяжелению повреждения генома клетки.

Во всех делящихся клетках сразу после облучения временно прекращается митотическая активность - радиационный блок митозов. Задержка деления в клетках активно пролиферирующих тканей (таких, например, как костный мозг) является существенной причиной их опустошения после облучения.

К функциональным нарушениям в клетках могут быть отнесены и такие проявления, как снижение фагоцитарной активности нейтрофилов после облучения, изменения активности некоторых ферментов в этих клетках. При дозах облучения, превышающих несколько десятков грей, важным послелучевым эффектом является нарушение функциональной активности нервных клеток, связанное с дефицитом макроэргов, в результате расходования их предшественников в процессе репарации разрывов ДНК.

Важнейшим радиобиологическим эффектом является гибель клеток. Различают две основные ее формы: репродуктивную, т.е. непосредственно связанную с процессом деления клетки, и интерфазную, которая может произойти в любой фазе клеточного цикла.

Если в результате облучения возникли повреждения ДНК, например двойные разрывы или сшивки, нормальная репликация делается невозможной. При формировании хромосом повреждения ДНК проявляются возникновением мостов, фрагментов и других типов хромосомных аберраций, многие из которых летальны, поскольку невозможно равномерное распределение генетического материала между дочерними клетками. Эта форма гибели клеток (в митозе) получила наименование репродуктивной гибели.

По интерфазному типу могут погибать как неделящиеся клетки, так и делящиеся, но находящиеся вне фазы митоза. Чаще всего для возникновения интерфазной гибели требуется облучение в достаточно высокой дозе. Для некоторых типов клеток (миоциты, нейроциты) это десятки и даже сотни грей. В то же время такие клетки, как лимфоциты, тимоциты, ооциты, могут погибнуть уже после воздействия в дозах порядка десятых и даже сотых долей грея. Механизмами интерфазной гибели клеток могут быть некроз и апоптоз.

Важным для организма результатом некоторых типов лучевой модификации молекул ДНК является возникновение наследуемых повреждений генетического материала – мутаций, следствием которых может быть злокачественное перерождение соматических клеток. Причиной возникновения мутации могут стать и вызванная облучением дестабилизация ДНК, и процесс репарации ее повреждений. В обоих случаях облегчается внедрение онковирусов в геном клетки или происходит активация тех онковирусов, которые уже предсуществовали в геноме в репрессированном состоянии. Следствием мутации в зародышевых клетках могут стать дефекты развития у потомства облученных родителей.