Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 зачет.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
56.27 Кб
Скачать

6.1.3. Зависимость скорости реакции от температуры

Правило Вант – Гоффа. Повышение температуры ускоряет большинство химических реакций. Согласно эмпирическому правилу Вант- Гоффа при повышении температуры на 10 К скорость многих реакций увеличивается в 2 – 4 раза

где v2 и v1 - скорости реакции при температурах Т2 и Т1, γ - коэффициент, значение которого для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2 – 4.

При концентрациях реагирующих веществ 1 моль/л скорость реакции численно равна константе скорости k. Правило Вант – Гоффа запишется так:

Уравнение показывает, что константа скорости зависит от температуры так же, как и скорость процесса.

Эти два уравнения можно использовать лишь для ориентировочных расчетов, так как точность их не очень высока.

6.1.4. Уравнение Аррениуса

В 1889 г. шведский ученый Сванте Аррениус на основании экспериментов вывел уравнение, которое названо его именем

,

где k – константа скорости реакции; А – предэкспоненциальный множитель; е – основание натурального логарифма; Еа – постоянная, называемая энергией активации, определяемая природой реакции. Значения Еа для химических реакций лежат в пределах 40 – 400 кДж/ моль.

После логарифмирования уравнение имеет вид

Е сли представить графическую зависимость lnk = f(1/T), то она имеет вид (рис 17).

Здесь tgα = -Еа/R  и  Еа = - Rtgα. Отрезок, отсекаемый на оси ординат равен lnА.

Итак, константа скорости реакции (и скорость) возрастает с увеличением температуры по экспоненциальному закону. В соответствии с уравнением Аррениуса константа скорости реакции уменьшается с ростом энергии активации. Уравнение Аррениуса позволяет рассчитывать константы скорости (и скорости) при различных температурах.

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации с, температуры t , присутствия катализаторов, а также от некоторых других факторов (например, от давления - для газовых реакций, от измельчения - для твердых веществ, от радиоактивного облучения).

Влияние концентраций реагирующих веществ. Чтобы осуществля­лось химическое взаимодействие веществ А и В, их молекулы (части­цы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной за­кон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:

Cкорость  химической реакции  пропорциональна произведению  концентра­ций реагирующих веществ.

Для реакции ( I ) этот закон выразится уравнением

v = kcA cB ,       (1)

где сА  и сВ   - концентрации веществ А и В, моль/л; k - коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.

Из уравнения (1) нетрудно установить физический смысл константы скорости k : она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ сос­тавляют 1 моль/л или когда их произведение равно единице.

Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ.

Влияние температуры .

Зависимость скорости реакции от температу­ры определяется правилом Вант-Гоффа:

При повышении температуры на каждые 10о скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением

 

vt 2 = vt 1 γ  , 

где vt 1 , vt 2  -  скорости реакции  соответственно при  начальной  ( t 1 ) и конечной ( t 2 ) температурах, а γ - температурный коэффициент скоро­сти реакции, который показывает, во сколько раз увеличивается ско­рость реакции с повышением температуры реагирующих веществ на 10°.

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реак­ции. Температура влияет на скорость химической реакции, увеличивая константу скорости.

В химии под номенклатурой понимают систему правил составления названий соединений. Правила номенклатуры разрабатываются Международным союзом чистой и прикладной химии (IUPAC).

Согласно номенклатуре комплексных соединений, название комплексного аниона начинают с указания состава внутренней сферы *. Во внутренней сфере прежде всего называют анионы, прибавляя к их названию окончание  -о. Например: Cl (хлоро-), CN (циано-), OH (гидроксо-) и т.д. Далее называют нейтральные лиганды *. При этом для аммиака используют название “аммин”, для воды – “аква”. Количество лигандовуказывают греческими числительными: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем называют комплексообразователь *, используя для него латинское название и окончание -ат, после чего римскими цифрами в скобках указывают степень окисления * комплексообразователя. После обозначения состава внутренней сферы называют внешнесферные катионы.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления. Примеры:

K[Fe(NH3)2(CN)4] – тетрацианодиамминферрат (III) калия

K4[Fe(CN)6] – гексацианоферрат (II) калия

Na2[PtCl6] – гексахлороплатинат (IV) калия

(NH4)2[Pt(OH)2Cl4] – тетрахлородигидроксоплатинат (IV) аммония

[Pt(NH3)4Cl2]Cl2 – хлорид дихлоротетраамминплатины (IV)

[Ag(NH3)2]Cl – хлорид диамминсеребра (I)

Если комплексное соединение является неэлектролитом, т.е. не содержит ионов во внешней сфере, то степень окисления центрального атома не указывается, т.к. она однозначно определяется из условия электронейтральности комплекса. Например:

[RhI3(NH3)3)] – трииодотриамминродий

[Co(NO2)3(H2O)3] – тринитротриаквакобальт

[Cu(CNS)2(NH3)2] – дироданодиамминмедь.