Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Доп вопросы от Чернавского.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
87.2 Кб
Скачать

Способ задания сверточных кодов

Сверточный код удобно задавать с помощью порождающих многочленов, которые определяются видом формулы (4.1) по аналогии с тем, как это осуществляется для линейных блоковых циклических кодов.

Подробную информацию о циклических кодах читатель сможет найти в учебном пособии Сагаловича Ю. Л. «Введение в алгебраические коды»[1] в главах 4 и 5.

Порождающий многочлен полностью определяет структуру двоичного кодера сверточного кода. В отличие от блоковых кодов, каждый из которых описывается лишь одним порождающим многочленом, сверточный код описывается несколькими порождающими многочленами. Количество многочленов, которыми описывается сверточный код определяется количеством выходных символов n. Представим последовательность информационных символов, поступающих на вход кодера в виде многочлена:  , где Xi — символ оператора задержки на i тактов работы сдвигающего регистра, ai = {0,1} — информационные двоичные символы. Многочлены, описывающие n последовательностей кодовых символов, поступающих на вход коммутатора кодера а затем в канал связи, имеют вид:  , где   двоичные кодовые символы на j-ом входе коммутатора кодера.

j-й порождающий многочлен сверточного кода имеет вид:  , где   двоичные коэффициенты, равные 1, если i-я ячейка сдвигающего регистра через схему суммирования связана с j-ым коммутатором кодера, и равны 0 в противном случае. Причем, в силу линейности сверточного кода и принятых обозначений получаем:  .

Используя представление сверточного кода с помощью порождающих многочленов, можно задавать сверточный код посредством последовательностей коэффициентов производящих многочленов, записанных в двоичной или восьмеричной форме. Запись в восьмеричной форме более компактная и используется при большой длине сдвигающего регистра кодера.

В общем случае последовательность коэффициентов j-ого производящего многочлена будет иметь вид   и совпадает с порождающей последовательностью кода (4.1). Тогда, если   — последовательность кодируемых символов, а   — последовательность кодовых символов на j-ом входе коммутатора кодера, то для любого из них, появляющегося в  -й момент времени ( ), можно записать:

 Таким образом, каждый кодовый символ выходной последовательности кодера сверточного кода определяется сверткой кодируемой информационной и порождающей последовательности, что и обуславливает название сверточных кодов. Сверточные коды являются частным случаем итеративных или рекуррентных кодов.

Применение

Сверточные коды используются для надежной передачи данных: видео, мобильной связи, спутниковой связи. Они используются вместе с кодом Рида — Соломона и другими кодами подобного типа. До изобретения турбо-кодов такие конструкции были наиболее действенными и удовлетворяли пределу Шеннона. Так же свёрточное кодирование используется в протоколе 802.11a на физическом MAC-уровне для достижения равномерного распределения 0 и 1 после прохождения сигнала через скремблер, вследствие чего количество передаваемых символов увеличивается в два раза и, следовательно, мы можем добиться благоприятного приема на принимающем устройстве.