
- •Глава 4. Физика взрыва
- •§ 4.1. Основная задача взрыва
- •§ 4.2. Законы сохранения в теории взрыва. Уравнения газовой динамики Основные уравнения газовой динамики выводятся из законов сохранения массы, количества движения и энергии.
- •Взяв полную производную по времени, получаем
- •§ 4.3. Интегралы уравнения движения
- •§ 4.4. Одномерное изэнтропическое движение гaза. Инварианты Римана
- •§ 4.5. Физические представления процессов формирования ударной волны
- •Фаза сжатия, 2- фаза разрежения
- •§ 4.6. Гидродинамические элементы во фронте ударной волны. Адиабата Гюгонио
- •§4.7. Детонационная волна
- •§4.8. Начальные параметры ударной волны при взрывах газовоздушных смесей и конденсированных взрывчатых веществ в атмосфере
- •§4.9. Нормальное отражение плоской ударной волны от абсолютно жесткой стенки
- •§4.10. Косое падение ударной волны на твердую поверхность
§ 4.5. Физические представления процессов формирования ударной волны
В предыдущем параграфе было установлено, что при ускоренном вдвигании поршня в трубу, заполненную газом, возможно формирование ударной волны, распространяющейся по газу. Действительно, при ускоренном движении поршня газ, непосредственно примыкающий к его поверхности, будет в силу своих инерционных свойств сжат в большей степени, чем вдали от поршня. Возмущения сжатия, вызванные движением поршня, будут распространяться по области газа, характеризующейся переменной величиной скорости звука, монотонно падающей по мере удаления от поршня. Вследствие этого возникшие возмущения будут стремиться догнать движущиеся впереди возмущения. При этом гребень впереди идущей волны будет становиться круче, амплитуда гребня будет возрастать. Данный процесс будет продолжаться до тех пор, пока не возникнет «вертикальный» фронт – скачок давления, который называется фронтом ударной волны, рис. 27а. Пересечение характеристик на рис. 26 и отражает это явление.
Если поршень внезапно остановится, то область сжатого газа будет продолжать движение вправо по оси . Известно, что отрицательных скачков давления не бывает. При остановке поршня возникает волна разрежения, представляющая собой совокупность элементарных волн понижения давления, распространяющихся с местной скоростью звука по движущейся области сжатого газа. При этом эпюра давлений начнет растягиваться, рис. 27б.
Следует отметить, что некоторые элементарные волны понижения давления, обладающие скоростью распространения, близкой к местной скорости звука за фронтом, в определенный момент времени могут догнать фронт и уменьшить его амплитуду.
Рассмотренные простые примеры движения поршня в трубе, заполненной газом, дают определенное представление о характере движения среды между фронтом ударной волны и поверхностью, разделяющей рассматриваемую среду и продукты взрыва, при взрыве.
«Классическая» форма ударной волны при взрыве заряда взрывчатого вещества в воздухе приведена на рис. 28.
При подходе ударной волны к некоторой точке пространства давление, плотность и другие гидродинамические элементы в этой точке скачком возрастают. Затем следует постепенное изменение этих величин, причем через некоторый промежуток времени давление и плотность в данной точке пространства становятся меньше, чем те же параметры в невозмущенной среде. Постепенно падает скорость движения частиц, затем меняя свое направление.
Рис. 28. Эпюра ударной волны
Фаза сжатия, 2- фаза разрежения
Таким
образом, эпюра ударной волны включает
области положительных и отрицательных
избыточных давлений. Передняя граница
сжатой области называется фронтом
ударной волны, а сама область – фазой
сжатия. За фазой сжатия следует фаза
разрежения. Разность
,где
-атмосферное
давление, называется избыточным давлением
во фронте ударной волны, время
-длительностью
фазы сжатия, время
-
длительностью фазы разрежения. Воздух
в фазе сжатия движется в сторону
распространения фронта, в фазе разрежения
– в противоположном направлении.
Площадь,
ограниченную эпюрой давления в фазе
сжатия, называют импульсом давления в
фазе сжатия
,
где
- избыточное давление в фазе сжатия.
Установлено,
что толщина фронта ударной волны
определяется величиной порядка длины
свободного пробега молекулы (
) см.
Расчетные зависимости для гидродинамических элементов во фронте ударной волны приводятся в следующем параграфе.