
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 1
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 2
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 3
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 4
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 5
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 6
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 7
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 8
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 9
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 10
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 11
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 12
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 13
- •5. Определить при каких значениях a и b две прямые
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 14
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 15
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 16
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 17
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 18
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 19
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 20
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 21
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 22
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •2. Найти координаты точки m, равноудаленной от точек a(2;3;3) и b(–1;1;–2), если точка м лежит на оси Оy.
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 23
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 24
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 25
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 26
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 27
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 28
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
- •5. Определить при каких значениях a и b две прямые
- •7. Составить уравнение плоскости, проходящей через две параллельные прямые:
- •Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 29
- •1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 1
1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
а) (2a–b)(3a+4b), б) |(2a–b)(3a+4b)|,
где |a|=2, |b|=3, a^b=/6.
2. Найти координаты точки M, равноудаленной от точек A(–2;1;4) и B(1;3;–1), если точка М лежит на оси Ох.
3. Даны координаты вершин пирамиды ABCD. Найти: а) объем пирамиды, б) площадь грани ABC, в) косинус угла между ребрами AB и AC, г) уравнение прямой АВ, д) уравнение плоскости АВС, если A(1;3;3),B(–1;2;–2),C(0;–1;3),D(2;1;0).
4. Показать, что векторы a, b, c, образуют базис. Найти разложение вектора d по этому базису, если a = (2;–1;1), b = (–1;2;1), c = (1;3;1), d = (–1;–2;3).
5. Определить при каких значениях a и b две прямые
(a–1)x–2y–1=0 и 6x–4y+b=0
а) пересекаются; б) параллельны; в) совпадают.
6. Из точки A(–2;3) выходит луч света под углом =arctg3 к оси Ox и отражается от нее. Написать уравнения падающего и отраженного лучей. Сделать чертеж.
7. Составить уравнение плоскости, проходящей через две параллельные прямые:
и
.
8. Построить кривую = 2sin(2), заданную в полярных координатах.
9. Вывести уравнение кривой, если сумма расстояний от каждой ее точки до точек F1(–5;0) и F2(3;0) есть величина постоянная и равна p=10. Сделать чертеж.
10. Привести уравнение 16x2–9y2–64x–54y–161=0 к каноническому виду, определить тип кривой и сделать чертеж.
Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 2
1. Вычислить выражения, используя определения и свойства скалярного и векторного произведений:
а) (a–3b)(2a+b), б) |(a–3b)(2a+b)|,
где |a|=4, |b|=2, a^b=2/3.
2. Найти координаты точки M, равноудаленной от точек A(2;3;3) и B(–1;1;–2), если точка М лежит на оси Оy.
3. Даны координаты вершин пирамиды ABCD. Найти: а) объем пирамиды, б) площадь грани ABC, в) косинус угла между ребрами AB и AC, г) уравнение прямой АВ, д) уравнение плоскости АВС, если A(3;2;1),B(1;–2;3),C(0;–1;4),D(2;1;0).
4. Показать, что векторы a, b, c, образуют базис. Найти разложение вектора d по этому базису, если a = (2;4;2), b = (–1;–2;–2), c = (3;5;1), d = (3;5;–1).
5. Определить при каких значениях a и b две прямые
3x+(a–2)y–6=0 и 6x–4y+b=0
а) пересекаются; б) параллельны; в) совпадают.
6. Из точки A(5;2) выходит луч света под углом =arctg2 к оси Ox и отражается от нее. Написать уравнения падающего и отраженного лучей. Сделать чертеж.
7. Составить уравнение плоскости, проходящей через две параллельные прямые:
и
.
8. Построить кривую = 5(2–sin), заданную в полярных координатах.
9. Вывести уравнение кривой, если сумма расстояний от каждой ее точки до точек F1(–7;0) и F2(5;0) есть величина постоянная и равна p=20. Сделать чертеж.
10. Привести уравнение 3x2–5y2+18x+10y+37=0 к каноническому виду, определить тип кривой и сделать чертеж.
Расчетно-графическая работа №2 Векторная алгебра и аналитическая геометрия Вариант 3