
- •Методыка выкладання матэматыкі і практыкум па рашэнню задач
- •Дадатковая
- •Рэпрадуктыўныя, калі вучань выконвае заданні па ўзору (пісьмовае складанне трохзначных лікаў);
- •Варыятыўныя, калі вучань выбірае правільны адказ з некалькіх прапанаваных адказаў;
- •Творчыя, калі патрабуецца скласці новую задачу, рашыць праблемную задачу, прымяніць свае веды ў новых нестандартных ўмовах.
- •1) Калі лік а пры лічэнні называюць раней ліку в, то а менш в для любых натуральных лікаў. Гэта агульнае сцвярджэнне, якое называюць агульнай пасылкай. Абазначаюць: а(х) в(х).
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •1. Праблемнае навучанне.
- •2..Праграмаванае навучанне
- •3, Пошукова-даследчая тэхналогія навучання..
- •1)Праблемнае ізлажэнне, пры якім настаўнік сам стварае праблемную сітуацыю, сам вылучае з яе праблему і ставіць праблемную задачу, сам яе рашае, сам правярае, ацэньвае ход і вынік рашэння;
- •2)Раблемна-пошукавы, або эўрыстычны, калі да пастаноўкі і рашэння, праверкі і ацэнкі вынікаў рашэння праблемнай задачы прыцягваюцца вучні;
- •3)Даследчы, калі пасля стварэння праблемнай сітуацыі настаўнікам пошукавую дзейнасць па пастаноўцы задачы, яе рашэнню, праверцы, ацэнцы хода і вынікаў рашэння вучні выконваюць самастойна.
- •1) Лінейнай, калі пасля вывучэння кожнай порцыі матэрыялу вучнем фармулюецца і правяраецца адказ на пытанне і пасля гэтага вывучаецца наступная порцыя;
- •2) Разгалінаванай, калі пасля вывучэння порцыі матэрыялу выбіраецца вучнем адзін з адказаў на пытанне, а пры няправільным выбары адказу тлумачыцца памылка і перавучваецца матэрыял;
- •3) Адаптыўнай, калі спалучаюцца абодва віды праграм у адпаведнасці з індывідуальнамі асаблівасцямі вучня. Праграмаванае навучанне можа ажыццяўляцца праз вучэбныя дапаможнікі або з прымяненнем эвм.
- •1. Прочитайте задачу1-ый уч. ----- кг
- •1Нструктаж па выкананню пройдзенаму матэрыялу
- •2) Визуальные, 3) аудиальные, 4) аудиавизуальные
- •1 Эпидиаскопы Радио Кодоскопы 2 3 Проигрыв.
- •П раводзіцца па-за ўрокаў з вучнямі не толькі аднаго, але і некалькіх класаў на добраахвотных асновах, якія вызначаюцца ўмовамі:
- •Прыёмы вучэбнай работы характэрызуюць спосабы здзяйснення вучэбнай дзейнасці. Яны падпарадкаваны вучэбным задачам, якія патрабуюць прымянення таго або іншага прыёма, ужо засвоенага вучнямі або новага.
- •1. Параўнанне канкрэтных велічынь ( даўжыні, плошчы, аб’ёму) спачатку “на вока”, а затым накладаннем, прыкладаннем, пераліваннем і г. Д.
- •2. Мадэляванне велічынь адрэзкамі. Параўненне велічынь з дапамогай адрэзкаў. Напрыклад:
- •5.Увядзенне мерак па вымярэнню велічынь. Мадэляванне велічынь адрэзкамі. Вымярэнне адрэзкаў меркай і паяўленне паслядоўнасці цэлых неадмоўных лікаў.
- •6. Пераход да меншай меркі і ўвядзенне дзеяння множання.
- •8. З дапамогай мадэлявання і пераходу да мерак у 10 разоў большых (меншых) за дадзеную ўводзяцца таксама дзесятковыя дробы, працэнты і дзеянні над імі.
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •1.Паўтарэнне прыёмаў складання і аднімання на аснове нумарацыі двухзначных лікаў.
- •3.Складанне, калі лік дапаўняецца да 10 і на аснове складу ліку вызначаецца і дадаецца да 10 лік, які застаўся.
- •4.Адніманне ад двухзначнага адназначнага ліку, калі памяншаемае прадстаўляецца ў выглядзе сумы двух складаемых, адно з якіх роўна аднімаемаму:
- •1) Калі лік а пры лічэнні называюць раней ліку в, то
- •2) 7 Пры лічэнні называюць раней, чым 8. Другое сцвярджэнне носіць прыватны характар. Яго называюць прыватнай пасылкай: а(а).
- •Выконваецца па плану
- •1. Множанне і дзяленне круглых лікаў:
- •Складанне з двумя пераходамі праз разрад.
- •9.Адніманне лікаў з прапушчанымі разрадамі
- •11. Алгарытмы аднімання аналагічныя алгарытмам аднімання трохзначных лікаў:
- •3. Дзяленне, калі дзялімае прадстаўляецца не сумай разрадных, а сумай зручных складаемых:
- •4. Састаўленне алгарытма пісьмовага дзялення трохзначнага ліку на адназначны лік.
- •5.Дзяленне трохзначнага ліку на адназначны, калі ў дзелі атрымоўваецца двухзначны лік:
- •6. Дзяленне, калі ў дзелі паяўляецца нуль.
- •1. Паўтарэнне нумарацыі трох- і чатырохзначных лікаў.
- •2. Выкарыстанне лічыльнікаў: паказ, дзе, на якім дроціку адкладваюцца адз. Тыс., дзес. Тыс., сотні тысяч.
- •3. Прымяненне табліцы разрадаў і класаў:
- •5. Складанне і адніманне найменных лікаў праводзіцца пасля папярэдняга прадстаўлення іх ў аднолькавых най-меннях і выконвацца так, як і над абстрактнымі лікамі:
- •2. Паўтарэнне прыёму пісьмовага множання 189 . Лік, алгарытму множання:1)пішу...,2)множу адзінкі... Х 4
- •3. Множанне ліку з нулямі ў канцы запісу: 189 000
- •5. Пісьмовае множанне найменных лікаў:
- •32832!456 1-Ае няпоўнае дзялімае 3283сот. У дзелі 2 лічбы.
- •Тэарэтычная аснова арыфметычных дзеянняў
- •5 І 4 лікавыя дадзеныя задачы
- •3. Да састаўленых задач падабраць патрэбныя выразы:
- •Из ряда данных составной задачи выбирают наиболее подходящую пару данных, находящихся между собой в той или иной зависимости
- •4 .Таблица
- •5.Схема
- •1.Запись решения рассмотренной задачи по действиям
- •8. Геометрический способ решения задачи Используя чертёж, найдём сумму отрезков:
- •1.Вывучэнне лікавых і літарных выразаў, роўнасцей і няроўнасцей
- •2.Навучанне рашэнню задач састаўленнем выразу і ўраўнення
- •3.Навучанне рашэнню ўраўўненняў і няроўнасцей з пераменннай
- •100•6– Колькасць сшыткаў, купленых у лінейку;
- •50•3 - Колькасць сшыткаў, купленых ў клетку і інш.
- •6 Па 100 сш Хсш Далей па чарцяжу
- •100•6 – Колькасць сшыткаў у лінейку
- •4. Рашэнне ўраўненняў і няроўнасцей з пераменнай спосабам падбору без вызначэння вобласці выбару.
- •6. Рашэнне больш складаных ураўненняў на аснове п.5
- •1. Актуалізацыя патрэбных ведаў.
- •2. Стварэнне праблемнай сітуацыі
- •3. Пастаноўка вучэбнай задачы.
- •6. Выкананне арыфметычных дзеянняў над найменнымі лікамі па тых жа алгарытмах і правілах, што і пры выкананні гэтых дзеянняў на абстрактных ліках.
- •Навучанне рашэнню задач праводзіцца ў 3-ы перыяды.
- •Падрыхтоўчы перыяд - знаёмства з залежнасцю паміж велічынямі: цаной - колькасцю - коштам; скорасцю-часам-адлегласцю; даўжынёй–шырынёй-плошчай прама-вугольніка і інш.
- •Асноўны перыяд - знаходжанне спосабаў рашэння задач з прапарцыянальнымі велічынямі.
- •Заключны перыяд - замацаванне спосабаў рашэння.
- •Задачы на прапарцыянальнае дзяленне
- •Задачы на знаходжанне ліку па двух рознасцях
- •6 У лінейку па той жа цане. Адноль 2 сш. ? р.
- •Задачы на рух
- •3Км/г, а длегласці - 16км) і чарцяжу
- •В личностно-логической модели а.А.Столяра одной из основных задач обучения математике ставится развитие логического мышления. Для этого в начальном обучении используются:
- •Логические методы: анализ и синтез, абстрагирование и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
- •Логическиеметоды: анализ и синтез, абстрагиро-вание и конкретизация, сравнение и аналогия, эмпирическое обобщение, рассуждения по индукции и дедукции;
8. Геометрический способ решения задачи Используя чертёж, найдём сумму отрезков:
А. 2) (27-9):3=6 (т.) у Алеся
М. 3 т. 27 т. 3) 6+3=9 (т.) у Миши
Л. 3 т. 4) 9+3=12 (т.) у Л ёни
У Алеся У Миши У Лёни
Перенесём три длинных и три коротких отрезка в один отрезок:
3т.3т.3т.
27
т. 1)
3·3
= 9 (т.)
Как известно, один маленький отрезок моделирует 3 тетради, а 3 таких же отрезка 3 · 3 = 9 (т.), три больших отрезка моделируют 27 – 9 = 18 (т.). Один большой отрезок моделирует 18 : 3 = 6 (т.) – количество тетрадей у Алеся. У Миши тетрадей 6 + 3 = 9 (т.), а у Лёни 9 + 3 = 12 (т.). 9. Способы дополнительной работы над задачей
.9.1. Выбор рационального способа решения
После анализа всех возможных способов решения задачи ученику обычно предлагается выбрать наиболее рациональный..9.2. Объяснение выражений, составленных по условию задачи
Так, у решающих обычно возникают трудности в пояснении выражений 3 + 3 + 3; 27 – 9; 27 + 9.
9.3. Выбор модели к задаче
Обычно выбор модели зависит от вида и способа решения задачи. Модель должна полностью представлять все числовые данные, отно-шения и зависимости задачи, подчёркивая наиболее существенные из них, их структуру.
9.4. Изменение текста задачи, чтобы исследовать, к какому решению это приведёт. Так, вначале мы значительно изменили текст задачи, сделали его удобным к пониманию как по форме, так и по содержанию. Двухкратная замена отношений на 3 больше отноше-ниями на 2, 4, 5, 6 больше приведёт к другим ответам задачи.Гэтая ж задача становіцца нестандартнай, калі яе ўмову дапоўніць словамі: Паміж машынамі ўвесь
ч
ас
да іх сустрэчы
лятала
муха. Якую адлегласць яна праляцела
Тэма. Пазатаблічнае дзяленне, калі дзялімае патрэбна рас-
кладаць на суму не разрадных, а зручных складаемых.
1. Актуалізацыя патрэбных ведаў.
- Паўтарэнне правіла аб дзяленні сумы двух лікаў на лік.
-Запіс лікаў, якія дзеляцца на 3: 0,3,6,9,12,15,18,21,24,27,30.
- Запіс рашэння прыклада з каменціраваннем:
48 : 2 = (40 + 8) : 2 = 40 : 2 +8 : 2 = 20+4 = 24 (паўтарэнне).
2. Стварэнне праблемнай сітуацыі
Рашыць прыклад : 48 : 3 = (40 + 8) : 3 = 40 : 3 + 8 : 3 .
Ранейшы спосаб рашэння, калі лік раскладалі на суму разрадных складаемых не падыходзіць.
3. Пастаноўка вучэбнай задачы.
Калі дзялімае нельга раскласці на суму разрадных складае-мых, якія б дзяліліся на лік, то,ці можна яго раскласці на суму другіх складаемых, якія б дзяліліся на гэты лік..
Паспрабуем падабраць пары такіх лікаў, якія б дзяліліся на 3 і сума якіх была роўна 48 з раду лікаў:
0,3,6,9,12,15,18,21,24,27,30. Падбор пачнем з канца: 30 і 18, 27 і 21, 24 і 24. З апошніх лікаў такіх пар утварыць нельга.
Рашаем прыклад з каменціраваннем:
48:3= (30+18) : 3 = 30:3 + 18:3 = 10 + 6 = 16 Выбіраем най-
48:3= (27+21) : 3 = 27:3 + 21:3 = 9 + 7 = 16 больш зруч-
48:3= (24+24) : 3 = 24:3 + 24:3= 8 + 8 = 16 ную пару лікаў.
4. Праверка спосабу рашэння на другіх прыкладах
52:2=(40+12):2, 75:5=(50+25):5,68:4=(40+28):4. Падыходзіць.
5. Вывад агульнага правіла
Калі пры дзяленні ліку яго разрадныя складаемыя не дзе-ляцца на дадзены лік, то патрэбна дзялімае раскласці на зручныя складаемыя, якія б дзяліліся на гэты лік,а затым знайсці іх суму.
6. Прымяненне спосабу рашэння ў нестандартных умовах70:2=(60+10) : 2, 60:5= (50 + 10) : 5 (падыйшоў лік 10).7. Перанос атрыманага спосабу на пісьмовае дзяленне 534:2=(400+120+14):2(прымяняецца пры дзяленні вуглом).
Задачы гэтых відаў зручна рашаць па іх мадэлях на адрэзках. Па кожнай канкрэтнай задачы на адрэзку-мадэлі паказваецца:каб знайсці дроб ад ліку, патрэбна лік падзяліць на назоўнік, а потым дзель памножыць на лічнік; каб знайсці лік па яго дробу, патрэбна лік падзяліць на лічнік, а потым дзель памножыць на назоўнік.
Задача. Агарод прамавугольнай формы мае шырыню 24 м, што складае 3/4 яго даўжыні. 2/3 усёй плошчы агарода засадзілі бульбай. Колькі квадратных метраў плошчы засадзілі бульбай?
Знаходзім лік, 3/4 частка якога складае 24 м.
24 м
3/4
4/4 - ? м
1/4 частка ад ліку 24 м складае 24:3=8(м).Увесь лік складае 4/4 часткі (у 4 разы больш,чым 8м): 8·4=32(м). Таму даўжыня агарода 24:3·4=32(м), а плошча агарода прамавугольнай формы будзе 32·24=768 (м2).
Далей знаходзім 2/3 ад ліку 768 (м2).
3/3 скл. 768 м2 1/3 ад ліку768м2: 768:3=256(м2)
2/3 складзе 256·2=512(м2).
Плошча, засаджаная бульбай,
НАВУЧАННЕ РАШЭННЮ ТЫПАВЫХ ЗАДАЧ на знаходжанне лікаў па іх суме і рознасці, па двух рознасцях, па суме (рознасці) і кратнай адносіне
Задача
1. Бідон
з малаком важыць 44 кг, а без
малака
- на 36 кг лячэй.Колькі важаць бідон і
ма-лако
паасобку?
Задачу
зручна рашаць мадэляван-нем адрэзкамі
і шляхам ураўнівання велічынях.
Б. - !---! ? кг 44кг
М.- !---!------------36 кг ------------! -? кг
Спосаб 1 - ураўніванне па масе малака
Б. - !---!..........................................! кг 44+36(кг)
М.- !---!------------36 кг ------------! -? кг
1) 44+36 = 80 (кг) -двайная маса малака
2) 80:2 = 40 (кг) - маса малака ў бідоне
3) 44-40 = 4 (кг) - маса пустога бідона
Спосаб 2 - ураўніванне па масе пустога бідона .
Б. - !---! ? кг 44-36(кг)
М.- !---!............36 кг...................! -? кг
1) 44-36 = 8 (кг)- двайная маса пустога бідона
2) 8 : 2 = 4 (кг) - маса пустога бідона
3) 44-4 = 40 (кг) - маса малака ў бідоне
Адказ: маса малака - 40кг, а бідона - 4 кг
Задача 2. Гарбуз у 3 разы цяжэйшы за дыню.
Іх агульная маса - 12кг. Якая маса гарбуза і дыні паасобку? Задачы 2, таксама 3 зручна рашаць на часткі з прымяненнем мадэлявання іх адрэзкамі.
М.д. - !---! 1ч. 12 кг
М.г. - !---!---!---! 3ч.
1) 1+3=4 (ч.) складае маса дыні і гарбуза
2) 12:4=3 (кг)- маса дыні (1 частка)
3) 3·3= 9 (кг) - маса гарбуза (3 часткі)
Адказ: маса дыні 3кг, а гарбуза - 9кг.
Задача 3. Гарбуз у 3 разы або на 6 кг цяжэйшы за дыню. Якая маса дыні і гарбуза паасобку?
М.г. - !---!---!---! -?кг
М.д. - !---! 2ч. або 6 кг -?кг
1) 3 - 1 = 2 (ч.) складаюць 6 кг
2) 6 :2 = 3 (кг) - маса дыні (1 частка)
3) 3·3 = 9 (кг) - маса гарбуза (3 часткі)
Задача 4. Турыст на байдарцы праехаў шлях па цячэнню ракі са скорасцю 14 км/гадз., а супраць цячэння той жа шлях - са скорасцю 8 км/гадз. Якая скорасць цячэння ракі і скорасць руху байдаркі? Задача 4 рашаецца шляхам мадэлявання руху адрэкамі: па цячэнню ракі, калі прыбаўляецца скорасць цячэння да скорасці байдаркі, і супраць цячэння, калі аднімаецца скорасць цячэння ад скорасці байдаркі. З чарцяжу бачна, што пры складанні лікаў 14 і 8 атрымоўваецца двайная скорасць байдаркі, а пры адніманні гэтых лікаў двайная скорасць цячэння ракі. Адкуль існуюць два спосабы рашэння:
Спосаб 1:
1) (14+8):2=11(км/гадз.) - скорасць байдаркі 2) 14-11= 3 (км/гадз.) - скорасць цячэння ракі Спосаб 2:
1) (14-8):2=3(км/гадз.)-скорасць цячэння ракі
2) 3+8= 11 (км/гадз)- скорасць байдаркі
МЕТОДЫКА ВЫВУЧЭННЯ АЛГЕБРАИЧНАГА МАТЭРЫЯЛУ
План