
- •Содержание
- •Вводная лекция по дисциплине «Методы математического моделирования в теплоэнергетических процессах»
- •Курс "Методы математического моделирования в теплоэнергетических процессах" включает в себя знания, которые являются фундаментальными в системе подготовки инженеров-теплотехников.
- •Дополнительная литература
- •1.2. Форма и принципы представления математической модели
- •1.3. Классификация погрешностей
- •1.4. Классификация алгебраических задач
- •Вопросы для самопроверки
- •Тема 2 Особенности построения математических моделей
- •Вопросы для самопроверки
- •Тема 3 Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей
- •Вопросы для самопроверки
- •Тема 4 Численные методы решения нелинейных уравнений
- •4.1. Метод половинного деления
- •4.2. Метод простых итераций
- •4.3. Метод Ньютона (метод касательных)
- •4.4. Модифицированный метод Ньютона (метод секущих)
- •4.5. Метод хорд
- •Вопросы для самопроверки
- •Тема 5 Компьютерное имитационное моделирование. Статистическое имитационное моделирование
- •Вопросы для самопроверки
- •Тема 6 Компьютерное моделирование и решение линейных и нелинейных многомерных систем
- •6.1. Решение систем линейных уравнений методом Гаусса
- •Вопросы для самопроверки
- •Тема 7 Моделирование многомерных нелинейных систем
- •7.1. Решение систем нелинейных уравнений
- •7.2. Метод простых итераций
- •7.3. Решение систем нелинейных уравнений методом Ньютона
- •7.4. Определение матрицы Якоби
- •Вопросы для самопроверки
- •Тема 8 Компьютерное моделирование при обработке опытных данных
- •8.1. Интерполяции и экстраполяция
- •8.2. Построение интерполяционного многочлена в явном виде
- •8.3. Интерполяция по Лагранжу
- •8.4. Программирование формулы Лагранжа
- •8.5. Интерполяция по Ньютону
- •8.6. Разделенные разности
- •8.7. Программирование формулы Ньютона
- •8.8. Пример интерполяции по Ньютону
- •8.9. Сплайн-интерполяция
- •8.10. Аппроксимация опытных данных
- •8.11. Сглаживание опытных данных методом наименьших квадратов
- •8.12. Программирование метода наименьших квадратов (мнк)
- •Вопросы для самопроверки
- •Тема 9 Компьютерное моделирование и решение нелинейных уравнений
- •9.1. Метод прямоугольников
- •9.2. Метод трапеций
- •9.3. Метод Симпсона
- •9.4. Численные методы решения дифференциальных уравнений первого порядка
- •9.5. Методы Рунге - Кутта
- •9.6. Метод Рунге - Кутта 2-го порядка (модифицированный метод Эйлера)
- •9.7. Метод Рунге - Кутта 4-го порядка
- •9.8. Решение дифференциальных уравнений высоких порядков
- •9.9. Решение дифференциальных уравнений второго порядка
- •9.10. Решение дифференциальных уравнений m-го порядка методом Рунге-Кутта (4-го порядка)
- •Вопросы для самопроверки
9.1. Метод прямоугольников
Словесный алгоритм метода прямоугольников:
Весь участок [a,b] делим на n равных частей с шагом h=(b-a)/n.
Определяем значение yi подынтегральной функции f(x) в каждой части деления, т.е.
В каждой части деления подынтегральную функцию f(x) аппроксимируем интерполяцион-ным многочленом степени n = 0, т.е. прямой, параллельной оси OX. В результате вся подынтегральная функция на участке [a,b] аппроксимируется ломаной линией.
Для каждой части деления определяем площадь Si частичного прямоугольника.
Суммируем эти площади. Приближенное значение интеграла I равно сумме площадей частичных прямоугольников.
Если высота каждого частичного прямоугольника равна значению подынтегральной функции в левых концах каждого шага, то метод называется методом левых прямоугольников (рис.9.3). Тогда квадратурная формула имеет вид
Рис. 9.3. Метод левых прямоугольников
Если высота каждого частичного прямоугольника равна значению подынтегральной функции в правых концах каждого шага, то метод называется методом правых прямоугольников (рис.9.4). Тогда квадратурная формула имеет вид
Рис. 9.4. Метод правых прямоугольников
Точность каждого метода прямоугольников имеет порядок h.
Алгоритм вычисления интеграла построим в виде итерационного процесса поиска с автоматическим выбором шага. На каждом шаге будем уменьшать шаг в два раза, то есть увеличивать число шагов n в два раза. Выход из процесса поиска организуем по точности вычисления интеграла. Начальное число шагов n=2.Схема алгоритма методов прямоугольников представлена на рис.9.5.
Рис. 9.5. Схема алгоритма метода прямоугольников (с автоматическим выбором шага)
Условные обозначения:
a,b - концы интервала,
- заданная точность,
с=0 - метод левых прямоугольников,
с=1 - метод правых прямоугольников,
S1 - значение интеграла на предыдущем шаге,
S - значение интеграла на текущем шаге.
9.2. Метод трапеций
Словесный алгоритм метода трапеций:
Интервал [a,b] делим на n равных частей с шагом h=(b-a)/n.
Вычисляем значение подынтегральной функции в каждой узловой точке
На каждом шаге подынтегральную функцию f(x) аппроксимируем прямой, соединяющей две соседние узловые точки. В результате вся подынтегральная функция на участке [a,b] заменяется ломаной линией проходящей через все узловые точки.
Вычисляем площадь каждой частичной трапеции.
Приближенное значение интеграла равно сумме площадей частичных трапеций, т.е.
.
Найдем площади Si частичных трапеций:
Приближенное значение интеграла равно
Точность метода трапеций имеет порядок h2.
Схема алгоритма метода трапеций представлена на рис.9.6.
Рис. 9.6. Схема алгоритма метода трапеций (с автоматическим выбором шага)
9.3. Метод Симпсона
В методе Симпсона в каждой части деления подынтегральная функция аппроксимируется квадратичной параболой a0x2+a1x+a2. В результате вся кривая подынтегральной функции на участке [a,b] заменяется кусочно-непрерывной линией, состоящей из отрезков квадратичных парабол. Приближенное значение интеграла I равно сумме площадей под квадратичными параболами.
Т.к. для построения квадратичной параболы необходимо иметь три точки, то каждая часть деления в методе Симпсона включает два шага, т.е.
Lk=2h.
В результате количество частей деления N2=n/2. Тогда n в методе Симпсона всегда четное число.
Определим площадь S1 на участке [x0, x2] (рис.9.2).
Исходя из геометрического смысла определенного интеграла, площадь S1 равна определенному интегралу от квадратичной параболы на участке [x0, x2]:
Неизвестные коэффициенты квадратичной параболы а0 , а1, а2 определяем из условия прохождения параболой через три узловых точки с координатами (x0y0), (x1x1), (x2y2).
На основании этого условия строим систему линейных уравнений:
Решая эту систему, найдем коэффициенты параболы.
В результате имеем:
.
Для участка [x2, x4]:
.
:::::::::::::::::::
Для участка [xi-1, xi+1]:
,
где
Суммируя все площади S1 под квадратичными параболами, получим квадратурную формулу по методу Симпсона:
где
N2 - количество частей деления.
Точность метода Симпсона имеет порядок (h3/h4).
Схема алгоритма метода Симпсона представлена на рис.9.7.
Рис. 9.7. Схема алгоритма Симпсона (с автоматическим выбором шага)