
- •Содержание
- •Вводная лекция по дисциплине «Методы математического моделирования в теплоэнергетических процессах»
- •Курс "Методы математического моделирования в теплоэнергетических процессах" включает в себя знания, которые являются фундаментальными в системе подготовки инженеров-теплотехников.
- •Дополнительная литература
- •1.2. Форма и принципы представления математической модели
- •1.3. Классификация погрешностей
- •1.4. Классификация алгебраических задач
- •Вопросы для самопроверки
- •Тема 2 Особенности построения математических моделей
- •Вопросы для самопроверки
- •Тема 3 Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей
- •Вопросы для самопроверки
- •Тема 4 Численные методы решения нелинейных уравнений
- •4.1. Метод половинного деления
- •4.2. Метод простых итераций
- •4.3. Метод Ньютона (метод касательных)
- •4.4. Модифицированный метод Ньютона (метод секущих)
- •4.5. Метод хорд
- •Вопросы для самопроверки
- •Тема 5 Компьютерное имитационное моделирование. Статистическое имитационное моделирование
- •Вопросы для самопроверки
- •Тема 6 Компьютерное моделирование и решение линейных и нелинейных многомерных систем
- •6.1. Решение систем линейных уравнений методом Гаусса
- •Вопросы для самопроверки
- •Тема 7 Моделирование многомерных нелинейных систем
- •7.1. Решение систем нелинейных уравнений
- •7.2. Метод простых итераций
- •7.3. Решение систем нелинейных уравнений методом Ньютона
- •7.4. Определение матрицы Якоби
- •Вопросы для самопроверки
- •Тема 8 Компьютерное моделирование при обработке опытных данных
- •8.1. Интерполяции и экстраполяция
- •8.2. Построение интерполяционного многочлена в явном виде
- •8.3. Интерполяция по Лагранжу
- •8.4. Программирование формулы Лагранжа
- •8.5. Интерполяция по Ньютону
- •8.6. Разделенные разности
- •8.7. Программирование формулы Ньютона
- •8.8. Пример интерполяции по Ньютону
- •8.9. Сплайн-интерполяция
- •8.10. Аппроксимация опытных данных
- •8.11. Сглаживание опытных данных методом наименьших квадратов
- •8.12. Программирование метода наименьших квадратов (мнк)
- •Вопросы для самопроверки
- •Тема 9 Компьютерное моделирование и решение нелинейных уравнений
- •9.1. Метод прямоугольников
- •9.2. Метод трапеций
- •9.3. Метод Симпсона
- •9.4. Численные методы решения дифференциальных уравнений первого порядка
- •9.5. Методы Рунге - Кутта
- •9.6. Метод Рунге - Кутта 2-го порядка (модифицированный метод Эйлера)
- •9.7. Метод Рунге - Кутта 4-го порядка
- •9.8. Решение дифференциальных уравнений высоких порядков
- •9.9. Решение дифференциальных уравнений второго порядка
- •9.10. Решение дифференциальных уравнений m-го порядка методом Рунге-Кутта (4-го порядка)
- •Вопросы для самопроверки
8.7. Программирование формулы Ньютона
Для построения многочлена Ньютона по формуле (8.7) организуем циклический вычислительный процесс по . При этом на каждом шаге поиска находим разделенные разности k-го порядка. Будем помещать разделенные разности на каждом шаге в массив Y.
Тогда рекуррентная формула (8.8) будет иметь вид:
|
(8.9) |
В формуле Ньютона (8.7) используются разделенные разности k-го порядка, подсчитанные только для участков [x0, x0+k], т.е. разделенные разности k-го порядка для i=0. Обозначим эти разделенные разности k-го порядка как у0. А разделенные разности, подсчитанные для I > 0, используются для расчетов разделенных разностей более высоких порядков.
Используя (8.9), свернем формулу (8.7). В результате получим
|
(8.10) |
где
у0 - значение табличной функции (8.1) для x=x0.
-
разделенная разность k-го порядка для
участка [x0, x0+k].
Для вычисления Р удобно использовать рекуррентную формулу P = P(x - xk-1) внутри цикла по k.
Схема алгоритма интерполяции по Ньютону представлена на рис.8.4.
Рис. 8.4. Схема алгоритма интерполяции по Ньютону
8.8. Пример интерполяции по Ньютону
Дана табличная функция:
i |
xi |
yi |
0 |
2 |
0,693147 |
1 |
3 |
1,098613 |
2 |
4 |
1, 986295 |
3 |
5 |
1,609438 |
Вычислить разделенные разности 1-го, 2-го, 3-го порядков (n=3) и занести их в диагональную таблицу.
Разделенные разности первого порядка:
Разделенные разности второго порядка:
Разделенная разность третьего порядка:
Таблица 8.1. Диагональная таблица разделенных разностей
i |
xi |
Разделенная разность |
|||
0-го порядка |
1-го порядка |
2-го порядка |
3-го порядка |
||
0 |
2 |
0,693147 |
|
|
0,00887416 |
1 |
3 |
1,098613 |
0,405466 |
-0,058892 |
|
2 |
4 |
1,386295 |
0,287682 |
-0,0322695 |
|
3 |
5 |
1,60943 |
0,223143 |
|
|
Интерполяционный многочлен Ньютона для заданной табличной функции имеет вид:
Далее полученный интерполяционный многочлен Ньютона можно привести к нормальному виду
и использовать его для решения задач интерполирования или прогноза.
8.9. Сплайн-интерполяция
Сплайны стали широко использоваться в вычислительной математике сравнительно недавно. В машиностроительном черчении они применяются уже давно, так как сплайны - это лекала или гибкие линейки, деформация которых позволяет провести кривую через заданные точки (xi, уi).
Используя теорию изгиба бруса при малых деформациях, можно показать, что сплайн - это группа кубических многочленов, в местах сопряжения которых первая и вторая производные непрерывны. Такие функции называются кубическими сплайнами. Для их построения необходимо задать коэффициенты, которые единственным образом определяют многочлен в промежутке между данными точками.
Например, для некоторых функций (рис.8.5) необходимо задать все кубические функции q1(x), q2(x), :qn(x).
В наиболее общем случае эти многочлены имеют вид:
где kij - коэффициенты, определяемые описанными ранее условиями, количество которых равно 4n. Для определения коэффициентов kij необходимо построить и решить систему порядка 4n.
Рис. 8.5. Функция
Первые 2n условий требуют, чтобы сплайны соприкасались в заданных точках:
Следующие (2n-2) условий требуют, чтобы в местах соприкосновения сплайнов были равны первые и вторые производные:
Система алгебраических уравнений имеет решение, если число уравнений соответствует числу неизвестных. Для этого необходимо ввести еще два уравнения. Обычно используются следующие условия:
При построении алгоритма метода первые и вторые производные удобно аппроксимировать разделенными разностями соответствующих порядков.
Полученный таким образом сплайн называется естественным кубическим сплайном. Найдя коэффициенты сплайна, используют эту кусочно-гладкую полиноминальную функцию для представления данных при интерполяции.