
- •Содержание
- •Вводная лекция по дисциплине «Методы математического моделирования в теплоэнергетических процессах»
- •Курс "Методы математического моделирования в теплоэнергетических процессах" включает в себя знания, которые являются фундаментальными в системе подготовки инженеров-теплотехников.
- •Дополнительная литература
- •1.2. Форма и принципы представления математической модели
- •1.3. Классификация погрешностей
- •1.4. Классификация алгебраических задач
- •Вопросы для самопроверки
- •Тема 2 Особенности построения математических моделей
- •Вопросы для самопроверки
- •Тема 3 Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей
- •Вопросы для самопроверки
- •Тема 4 Численные методы решения нелинейных уравнений
- •4.1. Метод половинного деления
- •4.2. Метод простых итераций
- •4.3. Метод Ньютона (метод касательных)
- •4.4. Модифицированный метод Ньютона (метод секущих)
- •4.5. Метод хорд
- •Вопросы для самопроверки
- •Тема 5 Компьютерное имитационное моделирование. Статистическое имитационное моделирование
- •Вопросы для самопроверки
- •Тема 6 Компьютерное моделирование и решение линейных и нелинейных многомерных систем
- •6.1. Решение систем линейных уравнений методом Гаусса
- •Вопросы для самопроверки
- •Тема 7 Моделирование многомерных нелинейных систем
- •7.1. Решение систем нелинейных уравнений
- •7.2. Метод простых итераций
- •7.3. Решение систем нелинейных уравнений методом Ньютона
- •7.4. Определение матрицы Якоби
- •Вопросы для самопроверки
- •Тема 8 Компьютерное моделирование при обработке опытных данных
- •8.1. Интерполяции и экстраполяция
- •8.2. Построение интерполяционного многочлена в явном виде
- •8.3. Интерполяция по Лагранжу
- •8.4. Программирование формулы Лагранжа
- •8.5. Интерполяция по Ньютону
- •8.6. Разделенные разности
- •8.7. Программирование формулы Ньютона
- •8.8. Пример интерполяции по Ньютону
- •8.9. Сплайн-интерполяция
- •8.10. Аппроксимация опытных данных
- •8.11. Сглаживание опытных данных методом наименьших квадратов
- •8.12. Программирование метода наименьших квадратов (мнк)
- •Вопросы для самопроверки
- •Тема 9 Компьютерное моделирование и решение нелинейных уравнений
- •9.1. Метод прямоугольников
- •9.2. Метод трапеций
- •9.3. Метод Симпсона
- •9.4. Численные методы решения дифференциальных уравнений первого порядка
- •9.5. Методы Рунге - Кутта
- •9.6. Метод Рунге - Кутта 2-го порядка (модифицированный метод Эйлера)
- •9.7. Метод Рунге - Кутта 4-го порядка
- •9.8. Решение дифференциальных уравнений высоких порядков
- •9.9. Решение дифференциальных уравнений второго порядка
- •9.10. Решение дифференциальных уравнений m-го порядка методом Рунге-Кутта (4-го порядка)
- •Вопросы для самопроверки
Вопросы для самопроверки
В каких случаях для описания систем и объектов используется система нелинейных уравнений?
В чем заключается метод простых итераций?
В чем заключается метод Ньютона?
Как осуществляется формирование матрицы Якоби?
Тема 8 Компьютерное моделирование при обработке опытных данных
Любому специалисту в своей практической деятельности приходится изучать зависимости между различными параметрами исследуемых объектов, процессов и систем.
Например: зависимость числа оборотов двигателя от нагрузки, т.е. n=f(Мкр.); зависимость силы резания при обработке детали на металлорежущем станке от глубины резания, т.е. P=f(t), и т.д.
Из всех способов задания зависимостей наиболее удобным является аналитический способ задания зависимости в виде функции n=f(Мкр.), P=f(t), y=f(t).
Однако на практике специалист чаще всего получает зависимости между исследуемыми параметрами экспериментально. В этом случае ставится натурный эксперимент, изменяются значения параметров на входе системы, измеряются значения параметров на выходе системы. Результаты измерений заносятся в таблицу.
Таким образом, в результате проведения натурного эксперимента получаем зависимости между исследуемыми параметрами в виде таблицы, т.е. получаем, так называемую, табличную функцию.
Далее с этой табличной функцией необходимо вести научно-исследовательские расчеты. Например, необходимо проинтегрировать или продифференцировать табличную функцию и т.д.
Рассмотрим две задачи по обработке опытных данных:
задачу интерполирования,
задачу аппроксимации.
8.1. Интерполяции и экстраполяция
Дана табличная функция, т.е. дана таблица, в которой для некоторых дискретных значений аргумента xi, расположенных в порядке возрастания, заданы соответствующие значения функции уi:
i |
x |
y |
0 |
x0 |
y0 |
1 |
x1 |
y1 |
2 |
x2 |
y2 |
... |
... |
... |
i |
xi |
yi |
... |
... |
.. |
n |
xn |
yn |
|
(8.1) |
Точки с координатами (xi, yi) называются узловыми точками или узлами.
Количество узлов в табличной функции равно
N=n+1.
На графике табличная функция представляется в виде совокупности узловых точек (рис. 8.1).
Рис. 8.1. Табличная функция
Длина участка [x0, xn] равна (xn - x0).
В расчетной практике инженера часто возникают задачи найти значение функции для аргументов, которые отсутствуют в таблице. Такие задачи называются задачами интерполирования или экстраполирования.
Задача интерполирования функции (или задача интерполяции) состоит в том, чтобы найти значения yk табличной функции в любой промежуточной точке хк, расположенной внутри интервала [x0, xn], т.е.
и
Задача экстраполирования функции (или задача экстраполяции) состоит в том, чтобы найти значения yl табличной функции в точке хl, которая не входит в интервал [x0, xn], т.е.
Такую задачу часто называют задачей прогноза.
Обе эти задачи решаются при помощи нахождения аналитического выражения некоторой вспомогательной функции F(x), которая приближала бы заданную табличную функцию, т.е. в узловых точках принимала бы значение табличных функций
Для определенности задачи искомую функцию F(x) будем искать из класса алгебраических многочленов:
|
(8.2) |
Этот многочлен должен пройти через все узловые точки, т.е.
|
(8.3) |
Поэтому степень многочлена n зависит от количества узловых точек N и равна количеству узловых точек минус один, т.е. n=N-1.
Многочлен вида (8.2), который проходит через все узловые точки табличной функции называется интерполяционным многочленом.
Интерполирование с помощью алгебраических многочленов называется параболическим интерполированием.
Таким образом, для решения задачи интерполирования прежде всего необходимо решить задачу, которую можно сформулировать следующим образом:
для функции
,
заданной таблично, построить
интерполяционный многочлен степени
n, который проходит через все узловые
точки таблицы:
где n-степень многочлена, равная количеству узловых точек N минус один,т.е. n=N-1.
В результате, в любой другой промежуточной точке хk, расположенной внутри отрезка [x0,xn] выполняется приближенное равенство Pn(xk) = f(xk) = yk. (рис.8.2):
Рис. 8.2. Интерполяционный многочлен