
- •Воздействие производственной пыли на дыхательную систему человека.
- •Загрязнение воздушной среды в производственных условиях.
- •Нормирование содержания вредных веществ в воздухе.
- •Определение количества тепла и влаги, поступающих в помещение.
- •Организация воздухообмена в производственных помещениях.
- •Системы вентиляции и санитарно-гигиенические требования ней.
- •Определение необходимого количества воздуха при общеобменной вентиляции.
- •Естественная вентиляция. Аэрация. Вентиляция с помощью дефлекторов.
- •Системы механической вентиляции. Вентиляторы и их подбор. Эжекторы.
- •Кондиционирование воздуха. Центральный кондиционер.
- •Основные светотехнические характеристики
- •Основные гигиенические требования к производственному освещению заключаются в следующем:
- •Системы и виды освещения. Классификация производственного освещения.
- •Область применения, эксплуатация и обслуживание естественного и искусственного освещения.
- •Нормирование искусственного и естественного освещения.
- •Расчет искусственного освещения. (Метод светового потока. Точечный метод. Метод удельной мощности).
- •Расчет естественного освещения графическим методом Данилюка.
- •Совмещенное освещение. Ультрафиолетовое облучение.
- •Средства индивидуальной защиты органов зрения. Контроль освещения.
- •51. Что такое шум. Физ. Характеристики шума.
- •52. Источники шума
- •52. Характеристики источников шума
- •53. Методы определения шумовых характеристик машин. Шумовые характеристики машин
- •В необходимых случаях определяют следующие дополнительные шумовые характеристики:
- •Методы определения шумовых характеристик
- •Основополагающие методы измерения (определения) шумовых характеристик следующие: а) для уровней звуковой мощности:
- •Б) для уровней звукового давления излучения в контрольных точках вблизи машины:
- •Режимы работы машины при определении шумовых характеристик
- •Протокол испытаний
- •54. Действие шума на человека. Аудиометрия. Нормирование шума
- •55. Аккустический расчет Целями акустического расчета являются:
- •Порядок выполнения акустического расчета.
- •Проведение акустического расчета.
- •Анализ результатов расчета.
- •Проведение инструментальных измерений.
- •Сроки выполнения акустического расчета.
- •56. Технические методы борьбы с ш.:
- •57. Аэродинамические шумы и их снижение
- •58. Гидродинамические и электромагнитные шумы Гидродинамические шумы.
- •Электромагнитные шумы.
- •59. Изменение направленности излучения шума. Рациональная планировка предприятий и цехов.
- •60. Акустическая обработка помещений
- •Защита от шума, ультразвука и инфразвука
- •63. Уменьшение шума на пути его распространения.
- •Защита от производственных вибраций
- •67. Понятие, причины возникновения и физические характеристики вибраций.
- •68. Воздействие вибраций на организм человека.
- •70. Характеристики источников вибраций. Методы снижения вибраций машин и оборудования.
- •71.Борьба с вибрацией на источник возбуждения.
- •72.Отстройка от режима резонанса.
- •73.Вибродемпфирование.
- •75.Изменение конструктивных элементов машин и строительных конструкций.
- •76.Виброизоляция.
- •77.Активная виброзащита.
- •78.Средства индивидуальной защиты. Организация труда работников виброопасных профессий.
- •79.Измерение вибраций и виброизмерительная аппаратура.
- •80. Защита от инфракрасных излучений (ики).
- •101. Явления при стекании тока в землю. Напряжение прикосновения и шага.
- •102. Сопротивления заземлителя растеканию тока
- •103. Схемы включения человека в электрическую цепь
- •104. Анализ опасности поражения током в трехфазной трехпроводной сети с изолированной нетралью.
- •105. Анализ опасности поражения током в трехфазной четырехпроводной сети с заземленной нетралью.
- •106. Основные причины несчастных случаев от воздействия электрического тока
- •107. Основные меры защиты от поражения электрическим током.
- •108. Классификация помещений по опасности поражения электрическим током
- •109. Защитное заземление. Типы заземляющих устройств
- •110. Выполнение заземляющих устройств. Оборудование, подлежащее заземлению
- •111.Зануление. Область применения зануления. Назначение нулевого защитного проводника
- •112.Назначение заземления нейтрали. Назначение повторного заземления нулевого защитного проводника
- •113.Защитное отключение. Устройство защитного отключения (узо). Типы узо.
- •114. Средства защиты, применяемые в электроустановках. Изолирующие электрозащитные средства. Ограждающие средства защиты. Предохранительные средства защиты.
- •115.Организация безопасности эксплуатации электроустановок
- •116.Персонал (Медосмотр. Обучение и квалификационные группы). Эксплуатация действующей установки.
- •117.Статическое электричество. Электризация.
- •118.Воздействие статического электричества на человека. Защита от статического электричества путем уменьшения интенсивности генерации электрических зарядов.
- •5.1. Общие положения
- •119.Устранение зарядов статического электричества. Нейтрализаторы статического электричества.
- •Назначение
- •Принцип действия
- •120. Причины поражения электрическим током и основные меры защиты
- •1. Ограждение.
- •2. Блокировки.
- •3. Двойная изоляция.
- •4. Расположение токоведущих частей на недоступной высоте и в недоступном месте.
- •Зонирование территории производственных объектов
- •Пожарная безопасность. Средства тушения пожаров и пожарная техника
104. Анализ опасности поражения током в трехфазной трехпроводной сети с изолированной нетралью.
Все случаи поражения человека током в результате электрического удара — следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.
Двухфазное включение человека в цепь тока (рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение — линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.
I = Uл/Rч = √ 3Uф/Rч,
где Uл и Uф —линейное и фазное напряжение, В; Rч — сопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).
Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.
Однофазное включение. На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.
Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока:
а — двухфазное прикосновение; б— однофазное прикосновение в сети с заземленной нейтралью; в — однофазное прикосновение в сети с изолированной нейтралью
В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле
Iч = U/(2Rч + r),
где U— напряжение сети, В; r — сопротивление изоляции, Ом.
В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда
Iч = Uф/(Ro + r/3),
где Rо — общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб — сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rn — сопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г — сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).
В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,
Iч=Uф(Rо + Rн),
где RH — сопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:
Iч≈UФ/R0.
На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В —более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.