Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kniga-pavlov-s.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.47 Mб
Скачать

4.3. Наследование зернистой структуры при плавлении и кристаллизации

В данном параграфе рассмотрена группа явлений, которые естественно объясняются в предположении, что жидкость наследует (в какой-то степени) зернистую структуру расплавляемого поликристаллического материала, а кристаллическое вещество наследует зернистую структуру затвердевающей жидкости. Зернистая структура, унаследованная жидкостью от твердого материала, может быть передана, почти без изменений, новому образцу твердого материала, который получают в результате последующей кристаллизации. Но если, например, жидкость с унаследованной структурой перегревается до перехода в состояние бесструктурной простой жидкости, она, очевидно, потеряет все сохраняемые структурные особенности. Другие воздействия могут изменять структуру в жидком состоянии. Ультразвуковая обработка и даже обычное перемешивание может измельчить зерно жидкости, переменное магнитное поле помогает "раскачать" границы зерен и облегчить течение по ним и др. Рассмотрим опытные данные.

4.3.1."Наследственность"

Известно, что если расплав получен плавлением крупнозернистоготвердого образца, то при его обратной кристаллизации снова можно получить крупнозернистый материал; плавление и кристаллизация мелкозернистого образца обычно снова дает мелкозернистый материал. Показано, что при соответствующих предосторожностях можно даже расплавить монокристалл (висмута) и при обратной кристаллизации вновь получить монокристалл той же ориентации [30].

В практике металлургии считается очевидным и широко используется представление, что при переплаве наследуется не только крупно- и мелкозернистость, но и более тонкие особенности и детали структуры. Так, в чугунах "наследуется" форма и объёмная доля выделений карбидов и углерода; переплавляя чугун с "розеточными", "кустообразными" или с "ветвистыми" выделениями, обычно снова получают образец с выделениями того же типа. Микроструктура и качество сварного шва оказываются зависящими от зернистой структуры расплавляемой электродной проволоки; термическая и механическая обработка шихты перед расплавлением используется для улучшения структуры получаемых затем отливок и др.

4.3.2. Потоковая обработка

Обработка в [29] состоит в том, что жидкий металл перед кристаллизацией втекает в тонкую длинную трубку. При ламинарном течении по трубке микрообъемы жидкости претерпевают большую деформацию сдвига и растягиваются в направлении течения. Из уравнений течения можно показать, что степень растяжения микрообъемов по длине трубки достигает величины порядка отношения длины трубки к диаметру. Если это отношение имеет величину порядка 100, и исходные зерна размером 10 мкм были равноосными, то они вытянутся в ленты длиной l  1000 мкм и толщиной b  0,1 мкм. После кристаллизации на полученном в трубке стержне действительно выявляется тонкополосчатая структура, состоящая из "растянутых" зерен с толщиной полос порядка нескольких десятых микрона [29]. Тем самым весьма наглядно, по нашему мнению, подтверждается зернистое строение жидкости, деформация зерен при течении, а также наследование этих деформированных зерен при кристаллизации.

Но при современном состоянии теории образование такой текстуры, естественно, объясняется не зернистой микроструктурой жидкости, но иными причинами, и на уровне наноструктур: частичным наследованием атомного упорядочения жидкостей, террасной кристаллизацией, анизотропией сил поверхностного натяжения и др. [29].

Как известно, зерна деформируются, вытягиваются или "расплющиваются" и др. при механической обработке твердого металла; это приводит к образованию текстуры и обычно дает улучшение механических свойств металла; поэтому кованый, прокатанный, прессованный или подвергнутый вытяжке металл по механическим свойствам лучше литого, необработанного. Так, при волочении проволоки зерна также вытягиваются вдоль одной оси, в направлении растяжения металла; при глубокой вытяжке степень растяжения зерен также может достигать, например, 100 - кратной величины, как и при потоковой обработке жидкого металла при отношении длины капилляра к его диаметру, равному 100.

Слиток, полученный из жидкого металла, пропущенного через капилляр, будет подобен по структуре бухте спрессованной и спеченной проволоки, если форма зерен сохранится. Аналогичную деформацию зерен можно получить, очевидно, и при фильтрации жидкого металла через слой пористого огнеупора, или через слой сыпучего материала.

Отсюда следует интересный вывод: можно, видимо, изменять форму и размеры зерен по определенным осям, получать текстуру твердого материала, улучшать его физические и механические свойства путем обработки не в твердом, а еще в жидком состоянии, с ничтожными энергетическими затратами на деформацию. Можно выполнять "обработку металла давлением", "волочение" или "штамповку" его, "дисперсионное упрочнение" и др. еще до кристаллизации. Так, металл, пропущенный в жидком состоянии через капилляр, после кристаллизации будет иметь текстуру, подобную текстуре проволоки после глубокой вытяжки.

Отметим, что и струя самой жидкости будет, очевидно, анизотропной по кинетическим свойствам. Так, диффузия или ионный электроперенос вдоль вытянутых зерен могут в большой степени идти по межзеренным границам, по механизму поверхностной диффузии и быстрее. Имеются и соответствующие опытные данные: Лепинских Б.М. и сотрудники показали анизотропию электропроводности в струе вязкого силикатного расплава [213]. Это объясняли с помощью полимерной модели расплава, ориентацией удлиненных кремнекислородных цепочек в направлении течения. В настоящее время достаточно очевидно, что не удастся построить убедительную количественную молекулярную модель (в частности, компьютерную) для такой цепочечной анизотропии в струе.

В жидком состоянии в принципе нетрудно провести и намного более глубокую деформацию вещества по сравнению с дефомацией, достигаемой в твердом состоянии. Уменьшая радиус капилляра и увеличивая его длину, можно на несколько порядков увеличить "глубину вытяжки" или степень деформации микрообъемов. Еще на несколько порядков величины более глубокую деформацию микрообъемов и зерен можно получить при "истирании" жидкости в какой-то "мельнице". Подобными методами можно, вероятно, получить такое измельчение и формоизменение зерен, какого не удается добиться обработкой твердого вещества; если это так, то будут получены недостижимые ныне свойства ( Такая "мельница" для истирания жидкости может иметь вид, например, автомобильного многодискового сцепления, работающего в масляной ванне.).

Можно предполагать понижение вязкости и повышение реакционной способности вещества в результате такой обработки уже в жидком состоянии. Можно ожидать после обработки более трудной кристаллизации и более легкого стеклования; у прозрачных жидкостей, вероятно, изменятся также оптические свойства при длинах волн, соответствующих размеру зерна.

Имеются данные, свидетельствующие о длительной "памяти" жидкости при подобных воздействиях; время релаксации велико. При работе с жидким металлом нередко не удается дождаться восстановления исходных свойств расплава.

Пропуская жидкий металл через пористый огнеупор или через капилляр, можно, очевидно, получить измельчение зерна. При температурах ниже точки стеклования это даст дисперсионное упрочнение металла, а выше Тст - наоборот, размягчение его и повышение пластичности. Ниже Тст измельчение зерна в пределе привело бы в область прочного металлического стекла, а выше Тст- в состояние "сверхпластичности", а затем и в область вязкой жидкости.

Этот анализ был выполнен нами совместно с Апакашевым Р.А. Он поставил также эксперименты, подтвердившие изменение механических свойств твердого металла в результате потоковой обработки его перед кристаллизацией. Пропускание жидкого металла через капилляр действовало качественно так же, как измельчение зерна. Образцы олова в результате потоковой обработки (неглубокой) приобрели повышенную пластичность и показали при комнатных температурах на 7% меньшую твердость. Это вполне естественно, так как комнатные температуры для легкоплавкого олова лежат выше точки стеклования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]