
- •Глава 1. (введение). “кризис” кинетической теории. Необходимое изменение традиционной молекулярной модели. История и состояние вопроса
- •Глава 2. Компьютерное моделирование затвердевания. Отсутствие затвердевания в традиционной модели. Характер эффектов, стабилизирующих структуру
- •Глава 3. Квазикристаллические свойства жидкостей.
- •1.1.1. В традиционной модели нет затвердевания
- •1.1.3. Затвердевание как следствие нарастания атомарных квантовых эффектов
- •1.1.5. История вопроса об отсутствии затвердевания
- •1.1.6. Соотношение теории и опыта. Психологические аспекты
- •1.1.7. Общая физическая причина обсуждаемых дискуссий
- •1.1.8. Квазикристаллические свойства жидкости
- •1.2. Феноменологическое описание свойств жидкости и твердого тела, представление о их противоположности.
- •1.2.1. Прочность и дальний порядок
- •1.2.2. Формирование традиционной молекулярной модели жидкости и затвердевания
- •1.2.3. Успехи кинетической теории на основе традиционной модели
- •1.2.4. Современный вид традиционной модели
- •1.2.5. Аналитические оценки кинетических свойств
- •1.2.6.Выявление неадекватности модели. Анализ прочности на атомарном уровне
- •1.2.7.Структурный подход к плавлению
- •1.2.8. Энергии активации
- •1.2.9. Нарастание трудностей в истолковании фазовых переходов
- •1.2.10. Признаки застоя в молекулярной теории кинетических свойств
- •1.3. Заключение
- •1.3.1. Мировоззренческий характер традиционных взглядов. Влияние философии
- •Традиционная модель и философия
- •Традиционная модель и философия
- •Кризисы в разных областях исследования
- •1.3.2. О химической форме движения материи
- •1.3.3. Ориентировочные оценки и строгие методы. Математизация исследований
- •1.3.4.Математизация исследований. Вытеснение
- •1.3.5. Приближённые оценки
- •1.4. Заключение к главе 1
- •Глава 2. Компьютерное моделирование затвердевания. Характер эффектов, стабилизирующих структуру
- •2.1 Прямое моделирование процессов переноса. Отсутствие затвердевания в традиционной модели
- •2.1.1.Затвердевание как скачок кинетических свойств
- •2.1.2. Прямое компьютерное моделирование вязкого или пластического течения и ионного электропереноса
- •2.1.3. Течение в модели при температурах около абсолютного нуля
- •2.1.4. Релаксация механических напряжений. Деформация постоянной силой
- •2.2. Обсуждение результатов моделирования
- •2.2.1.Температурная зависимость кинетических свойств
- •2.2.2. Влияние вида парного потенциала
- •2.2.3. Молекулярный механизм пластической деформации или вязкого течения
- •2.2.4. Молекулярный механизм течения около абсолютного нуля
- •2.3. Кристаллизация. Устойчивость
- •2.3.1. Моделирование кристаллизации
- •2.3.2. Устойчивость решеток и сеток
- •2.3.3. Определение мягких мод в компьютерном эксперименте
- •2.4. Состояние вопроса об отсутствии затвердевания
- •2.4.1. Литературные данные
- •2.4.2. Расхождение традиционной модели с действительностью по дальнему порядку и размытости фазовых переходов
- •2.5. Затвердевание как переход в квантовую область. Подбор потенциала для стабилизирующих структуру эффектов
- •2.5.1. Затвердевание приходится на температуры перехода из классической области в квантовую
- •2.5.2. Подобие затвердевания и перехода к сверхтекучести
- •2.5.3. Диаграммы состояния других веществ в области около абсолютного нуля
- •2.5.4. Подбор поправки к потенциалу для выражения эффектов, стабилизирующих структуру
- •2.5.5. Влияние направленности и ковалентности связи
- •2.5.6. Другие свойства твердых тел, не объясняющиеся в рамках традиционной модели
- •2.6. Заключение к гЛаве 2. Состояние вопроса
- •Глава 3. Квазикристалличекие свойства жидкостей
- •3.1. Традиционная модель и квазикристаллические свойства. Состояние вопроса
- •3.1.1. Введение
- •3.2. Модуль сдвига и предел прочности жидкости
- •3.2.1. Экспериментальная часть
- •3.2.2. Обсуждение результатов. Состояние вопроса
- •3.2.3. Последействие
- •3.3. Особенности на политермах и структурные перестройки в жидкости
- •3.3.1. Превращение в жидком железе около 1640 oС
- •3.3.2. Превращения в силикатных расплавах
- •3.3.3. Политермы вязкости воды
- •3.3.4. Дифференциальные координаты
- •3.4. О дальнем порядке в жидкости
- •3.4.1. Экспериментальные данные
- •3.4.2. Огранка
- •3.4.3. Сопоставление с традиционным подходом. Состояние вопроса
- •3.5. Осцилляции
- •3. 6. Квазикристаллические свойства жидкости и генерация турбулентных пульсаций в гидродинамическом потоке. Состояние вопроса
- •3.6.1. Введение
- •3.6.2. История вопроса (по работам [12, 53, 133, 134])
- •3.6.3. Механизм генерации пульсаций в потоке при твердоподобном сопротивлении течению
- •3.6.4. Сопоставление с известными примерами генерации колебаний.
- •3.6.5. Концентрация течения в отдельных плоскостях
- •3.6.6. Образование вихрей
- •3.6.7. Объемная и поверхностная турбулизация
- •3.6.8. Резюме к параграфу 3.6
- •Глава 4. Зернистая, или блоковая, структура реальной жидкости
- •4.1. Блоки и размытость фазовых переходов
- •4.1.1. Температурный интервал размытия т переходов
- •4.1.2. Экспериментальные данные [28, 30]
- •4.1.3. Оценка величины "кванта превращения" при других переходах
- •4.1.4. Размытость "концентрационных фазовых переходов"
- •4.1.5. "Надмолекулярный" характер соединений в твердом теле
- •4.1.6. Устойчивость соединений. Выделение химического и структурного слагаемых в энергии взаимодействия
- •4.2. Неоднородность течения реальной жидкости. Зернистая структура и соотношение коэффициентов вязкости и диффузии
- •4.2.1. Неоднородность течения
- •4.2.2. Оценка размеров "блоков течения" в жидкости
- •4.3. Наследование зернистой структуры при плавлении и кристаллизации
- •4.3.1."Наследственность"
- •4.3.2. Потоковая обработка
- •4.3.3. Термовременная обработка жидкого металла (тво) [24, 25]
- •4.3.4. Зародышеобразование и кинетика кристаллизации
- •4.3.5. Микронеоднородность эвтектических расплавов
- •4.3.6. Влияние слабых полей. Ультразвуковая обработка
- •4.3.7. Жидкий кристалл
- •4.3.8. Зависимость свойств поликристалла от размера зерна. Сверхпластичность. Дисперсионное упрочнение
- •4.4.9. Микрокристаллитная и коллоидная модель стекла
- •4.3.10. Состояние вопроса
- •4.4. Заключение к главе 4
- •Глава 5. Структурные дальнодействия и поверхностные явления
- •5.1. Дальнодействия в пленках и коллоидах
- •5.1.1. Дальнодействия в модели
- •5.1.2. Опытные данные по пленкам
- •5.1.3. Вязкие коллоиды и гели
- •5.1.4. Обсуждение опытных данных. Состояние вопроса
- •5.2. Дальнодействия в твердом состоянии
- •5.2.1. Масштабный фактор прочности
- •5.2.3. Дисперсионное упрочнение
- •5.2.4. О морфологии включений, фаз эвтектики, растущих кристаллов
- •5.2.5. Эффект ребиндера
- •5.2.6. Ориентирующие взаимодействия кристаллов
- •5.3. Выделение вклада дальнодействий в поверхностном натяжении
- •5.3.1. Дальнодействия, толстые пленки и их вклад в поверхностное натяжение
- •5.3.2. Термодинамические функции взаимодействия
- •5.3.3. Энтропия взаимодействия и оценки плотности упаковки, степени квантовости
- •5.3.4. Модель разорванных связей
- •5. 3. 5. Электронные теории поверхностного натяжения
- •5. 3. 6. Уточнение формулы для поверхностного натяжения чистых жидкостей
- •5.3.7.Поверхностное натяжение растворов
- •5.3.8.Аномально высокая поверхностная активность
- •5.3.9. Межфазное натяжение
- •5.3.10.Выделение вклада структурных дальнодействий и толстых пленок в поверхностное натяжение. Граница кристалл-жидкость в однокомпонентной системе
- •5.3.11. Граница кристалл-газ. Межзеренные границы
- •5.3.12. Зависимость температуры кристаллизации от размера капельки
- •5.3.13. Решетка и огранка малых частиц
- •5.4. Спекание и смачивание. Роль структурных дальнодействий и толстых пленок
- •5.4.1. Кинетический акт в традиционной модели
- •5.4.2. Кинетический акт спекания и смачивания в предлагаемой модели. Трение
- •5.4.3. Опытные данные по скорости самого акта спекания (кинетического звена)
- •5.4.4. Кинетическое сопротивление растеканию
- •5.4.5. Транспортное сопротивление спеканию и смачиванию.
- •5.5. Поверхностные свойства и дальнодействующие структурные
- •Глава 6. Корреляция параметров затвердевания и стабильности структуры с приведенной температурой и с мерой квантовости.
- •6.2.Превращения в начале и конце интервала затвердевания.
- •6.2.1. Начало интервала затвердевания или переход от состояния простой жидкости к состоянию реальной (затвердевающей) жидкости.
- •6.2.2. Конец интервала затвердевания.
- •6.2.3. "Точка стеклования" кристаллических веществ.
- •6.3.Общая сxема изменения кинетических свойств.
- •6.3.1. Общая схема изменения кинетических свойств при стекловании и кристаллизации.
- •6.3.2. Общий вид и истолкование политерм вязкости. Состояние вопроса.
- •6.3.3. Описание затвердевания в терминах вязкости и прочности. O качественном различии жидкости и твердого тела.
- •6.3.4. Тепловой эффект, сопровождающий повышение вязкости.
- •6.3.5. Химические классы жидкостей и стадии затвердевания.
- •6.4. Влияние атомарных квантовых эффектов.
- •6.4.1. Затвердевание и “степень квантовости”.
- •6. 4. 2. Влияние квантового параметра на tемпературу плавления.
- •6.5. Аналогичные закономерности для скорости химических реакций.
- •6.5.1. Подобие закономерностей для стабильности межмолекулярной и внутримолекулярной структуры. Постановка вопроса.
- •6.5.2. Зависимость стабильности внутримолекулярной структуры и “степени молекулярности” от квантового параметра.
- •6.5.3. Переходы от молекулярной формы к атомарной. Стёкла как промежуточные состояния.
- •6.5.4.Размягчение внутримолекулярной структуры при нагреве. Температурная зависимость энергий активации химических реакций.
- •6.5.5.Другие закономерности. Усреднение степени молекулярности компонентов раствора и катализ.
- •6.5.6. Перераспределение суммарной стабильности между внутри- и межмолекулярной структурой.
- •6.5.7. Перераспределение жесткости структуры и термодинамические характеристики плавления молекулярных веществ.
- •6.5.8.Простая атомарная многокомпонентная жидкость.
- •6.6. Заключение. Состояние вопроса.
- •6.6.1. Основные результаты.
- •7. Резюме.
- •Часть 2. - м.: Металлургиздат, 1966, 720 с.
2.3.3. Определение мягких мод в компьютерном эксперименте
Каждая частица участвует во многих коллективных колебаниях с частотами i, и её отклонение от узла R можно записать в виде:
R=Ri=хoi*cos(it+ ).
С помощью фурье-преобразования отклонения частицы R(t) можно определить спектр её колебаний. Фононный спектр определяют также с помощью фурье-преобразования автокорреляционной функции скоростей системы [14].
Для наших целей удобнее перейти к релаксационной процедуре, то есть к условию Т 0. Обычное уравнение ускоренного движения заменяется условием x = кf ; смещение х пропорционально действующей силе f. Каждое гармоническое колебание xio*cos(it+i) переходит при этом в экспоненциальное уменьшение отклонения частицы от узла xi=xio*exp(-it).
Суммарное квадратичное отклонение (или диффузионное смещение) по всем частицам выразится уравнением:
= R2 = xoi2*еxp(-2it).
Такое изменение программы с переходом от гармонических свободных колебаний к затухающему апериодическому движению соответствует мысленному переносу колеблющейся решётки в среду с высокой вязкостью, где она медленно релаксирует к равновесной конфигурации.
Если бы в уравнении для было только одно слагаемое xoi2*exp(-2it), то в координатах ln-t получилась бы прямая с угловым коэффициентом -2i. При двух слагаемых получатся два линейных участка с плавным переходом; частоты 1, 2 определятся по двум угловым коэффициентам на двух линейных участках зависимости. Можно тем же способом обработать и плавную реальную кривую ln-t для всей системы, разбивая её на множество почти линейных участков, и получить весь спектр i(). Более точно эта процедура выполняется с помощью формулы Алфрея [81]: этим способом широко пользуются , в частности, для вычисления спектра времён релаксации Tr() механических напряжений в стёклах по кривой уменьшения полного напряжения со временем t [81].
В исходном состоянии основной вклад в отклонение ( или в возмущение, в неравновесность системы) вносят высокочастотные моды, и частота, определённая по начальному участку кривой релаксации - t, близка к основной дебаевской частоте спектра или к “частоте обрезания”. Максимальная или начальная частота получается равной max = 5*10-12 с-1, что согласуется с дебаевской частотой , полученной из характеристической температуры твердого аргона (D = 93 К, [ 9 ] , h /kTпл 1,1 ).
Высокочастотные компоненты с максимальными отрицательными показателями экспонент -2i быстро спадают уже на первых шагах счёта; для более точного определения max приходится просчитывать начальный участок кривой - t с уменьшенным шагом счета. Вскоре в исследуемой сумме остаются лишь наиболее интересные для нас низкочастотные или длинноволновые компоненты. Преимущество данной программы состоит в том, что в конце счёта малые низкочастотные компоненты изучаются отдельно, а не на фоне больших высокочастотных компонент. Тепловое движение и флюктуации отсутствуют, поэтому значащими являются сколь угодно малые изменения координат и свойств системы.
Наибольший интерес представляют минимальные или конечные частоты, то есть угловой коэффициент релаксационной кривой R2 - t в конце счёта. При достаточной продолжительности счёта min дает удовлетворительную (несколько завышенную) оценку физической минимальной частоты. Если полученная минимальная частота меньше минимальной дебаевской, то устойчивость в модели понижена по сравнению с реальным веществом. Если выявляются отрицательные значения 2 ( мнимые частоты), система абсолютно неустойчива.
Для упорядоченной плоской решётки с периодическими граничными условиями отношение конечных частот к начальным или минимальных к максимальным получилось следующее:
При = 0% 2min / 2max = 4,7*10-3
При =10% 2min / 2max = -24*10-3
Дебаевское или “твёрдотельное” значение отношения min/max составляет 1/52 =4*10-2 . Следовательно, исследуемая система в отсутствии нагрузки =0%) примерно в 10 раз менее устойчива по каким-то координатам, то есть по отношению к каким-то перегруппировкам частиц, чем реальное твёрдое тело. Энергия активации вязкого течения, пропорциональная устойчивости или жёсткости связи по данной координате, также будет примерно на порядок величины меньше реального значения 30RT и составит 3RT , вязкость в точке стеклования превысит вязкость простой жидкости не на 15 порядков величины, а лишь на 1,5 порядка; затвердевание не наступит.
У нагруженной или деформированной системы выявляется абсолютная неустойчивость, то есть отрицательные значения 2min или мнимые частоты. Выявляется компонента смещения , которая не убывает, но нарастает со временем. В системе развивается самопроизвольный и самоускоряющийся процесс перегруппировки атомов; перемещения развиваются по схеме рис. 2.5, полученной для релаксации напряжений, и при продолжении процесса приведут к полной релаксации, до = 0.
По этой “координате релаксации” система ведёт себя, как “шарик на горке” или материальная точка (частица) в точке максимума энергии; эти системы приводят как примеры абсолютной неустойчивости; отклонение от равновесия в таких системах самопроизвольно и ускоренно растёт со временем. Суммарное отклонение от равновесия в таких случаях проходит через минимум, когда преобладание убывающих компонент сменяется преобладанием возрастающих (рис. 2.16). Такой минимум (точнее, самопроизвольный ускоряющийся рост отклонения от равновесия после минимума) является признаком неустойчивости системы (В теории химических реакций подобную координату называют “координатой реакции”; движение по ней соответствует элементарному акту реакции.).
Отметим, что в качестве меры отклонения системы от равновесия можно выбрать не только величину диффузионного смещения , но также и величины отклонений от равновесных значений энергии U-Uo, давления P-Po, напряжений -o и др.; здесь величины Uo, Po, o соответствуют равновесной конфигурации, например, идеальной решётке. По кривым приближения к равновесным значениям величин U, P,также можно определить max и min, а при необходимости и весь спектр системы.
Минимальная частота, составляющая 4,7*10-3 max, уменьшилась ещё в 2,5 раза в результате снятия периодических граничных условий (ПГУ). Подтвердилось положение, высказанное выше: некоторая устойчивость, которую проявляет упорядоченная система, является в основном нефизической; она вызвана наложением периодических граничных условий.
В отсутствии ПГУ отрицательные значения 2min(мнимые частоты) выявились во всех нагруженных системах, кроме идеальной монокристаллической решетки, при деформации , равной 1,5%, 0,4% и 0,1% . Эти системы неустойчивы, в них развивается ускоряющийся процесс перегруппировки атомов и релаксации напряжений.
В случае разупорядоченной ( аморфной ) структуры мнимые частоты, неустойчивость и ускоряющаяся перегруппировка выявлялись и при очень малых нагрузках, до = 0,01%, даже при = 0.
Таким образом, можно не анализировать в модели весь процесс пластической деформации или ее основной части - релаксации напряжений; достаточно выяснить, что традиционная модель твёрдого тела, кристаллического или стеклообразного, неустойчива при действии напряжений, не выдерживает реальных нагрузок; в ней начинается ускоряющийся процесс перегруппировки атомов с релаксацией напряжений.
При исследовании спектра и его мягких мод в случае аморфной структуры всегда выявлялись отрицательные значения устойчивости 2min<0 или мнимые частоты, даже при отсутствии внешней нагрузки или деформации. Неупорядоченная аморфная структура оказывается не метастабильной, как у реальных веществ, но “абсолютно неустойчивой”, нестабильной. Эта неупорядоченная структура самопроизвольно переходит в упорядоченную при Т 0, то есть с помощью релаксационной процедуры, без преодоления каких-либо энергетических барьеров, безактивационно. Эти результаты определяются в основном отталкиванием жёстких сердцевин частиц, отталкивательной ветвью потенциала и не изменяется качественно при варьировании потенциалов.