
- •Глава 1. (введение). “кризис” кинетической теории. Необходимое изменение традиционной молекулярной модели. История и состояние вопроса
- •Глава 2. Компьютерное моделирование затвердевания. Отсутствие затвердевания в традиционной модели. Характер эффектов, стабилизирующих структуру
- •Глава 3. Квазикристаллические свойства жидкостей.
- •1.1.1. В традиционной модели нет затвердевания
- •1.1.3. Затвердевание как следствие нарастания атомарных квантовых эффектов
- •1.1.5. История вопроса об отсутствии затвердевания
- •1.1.6. Соотношение теории и опыта. Психологические аспекты
- •1.1.7. Общая физическая причина обсуждаемых дискуссий
- •1.1.8. Квазикристаллические свойства жидкости
- •1.2. Феноменологическое описание свойств жидкости и твердого тела, представление о их противоположности.
- •1.2.1. Прочность и дальний порядок
- •1.2.2. Формирование традиционной молекулярной модели жидкости и затвердевания
- •1.2.3. Успехи кинетической теории на основе традиционной модели
- •1.2.4. Современный вид традиционной модели
- •1.2.5. Аналитические оценки кинетических свойств
- •1.2.6.Выявление неадекватности модели. Анализ прочности на атомарном уровне
- •1.2.7.Структурный подход к плавлению
- •1.2.8. Энергии активации
- •1.2.9. Нарастание трудностей в истолковании фазовых переходов
- •1.2.10. Признаки застоя в молекулярной теории кинетических свойств
- •1.3. Заключение
- •1.3.1. Мировоззренческий характер традиционных взглядов. Влияние философии
- •Традиционная модель и философия
- •Традиционная модель и философия
- •Кризисы в разных областях исследования
- •1.3.2. О химической форме движения материи
- •1.3.3. Ориентировочные оценки и строгие методы. Математизация исследований
- •1.3.4.Математизация исследований. Вытеснение
- •1.3.5. Приближённые оценки
- •1.4. Заключение к главе 1
- •Глава 2. Компьютерное моделирование затвердевания. Характер эффектов, стабилизирующих структуру
- •2.1 Прямое моделирование процессов переноса. Отсутствие затвердевания в традиционной модели
- •2.1.1.Затвердевание как скачок кинетических свойств
- •2.1.2. Прямое компьютерное моделирование вязкого или пластического течения и ионного электропереноса
- •2.1.3. Течение в модели при температурах около абсолютного нуля
- •2.1.4. Релаксация механических напряжений. Деформация постоянной силой
- •2.2. Обсуждение результатов моделирования
- •2.2.1.Температурная зависимость кинетических свойств
- •2.2.2. Влияние вида парного потенциала
- •2.2.3. Молекулярный механизм пластической деформации или вязкого течения
- •2.2.4. Молекулярный механизм течения около абсолютного нуля
- •2.3. Кристаллизация. Устойчивость
- •2.3.1. Моделирование кристаллизации
- •2.3.2. Устойчивость решеток и сеток
- •2.3.3. Определение мягких мод в компьютерном эксперименте
- •2.4. Состояние вопроса об отсутствии затвердевания
- •2.4.1. Литературные данные
- •2.4.2. Расхождение традиционной модели с действительностью по дальнему порядку и размытости фазовых переходов
- •2.5. Затвердевание как переход в квантовую область. Подбор потенциала для стабилизирующих структуру эффектов
- •2.5.1. Затвердевание приходится на температуры перехода из классической области в квантовую
- •2.5.2. Подобие затвердевания и перехода к сверхтекучести
- •2.5.3. Диаграммы состояния других веществ в области около абсолютного нуля
- •2.5.4. Подбор поправки к потенциалу для выражения эффектов, стабилизирующих структуру
- •2.5.5. Влияние направленности и ковалентности связи
- •2.5.6. Другие свойства твердых тел, не объясняющиеся в рамках традиционной модели
- •2.6. Заключение к гЛаве 2. Состояние вопроса
- •Глава 3. Квазикристалличекие свойства жидкостей
- •3.1. Традиционная модель и квазикристаллические свойства. Состояние вопроса
- •3.1.1. Введение
- •3.2. Модуль сдвига и предел прочности жидкости
- •3.2.1. Экспериментальная часть
- •3.2.2. Обсуждение результатов. Состояние вопроса
- •3.2.3. Последействие
- •3.3. Особенности на политермах и структурные перестройки в жидкости
- •3.3.1. Превращение в жидком железе около 1640 oС
- •3.3.2. Превращения в силикатных расплавах
- •3.3.3. Политермы вязкости воды
- •3.3.4. Дифференциальные координаты
- •3.4. О дальнем порядке в жидкости
- •3.4.1. Экспериментальные данные
- •3.4.2. Огранка
- •3.4.3. Сопоставление с традиционным подходом. Состояние вопроса
- •3.5. Осцилляции
- •3. 6. Квазикристаллические свойства жидкости и генерация турбулентных пульсаций в гидродинамическом потоке. Состояние вопроса
- •3.6.1. Введение
- •3.6.2. История вопроса (по работам [12, 53, 133, 134])
- •3.6.3. Механизм генерации пульсаций в потоке при твердоподобном сопротивлении течению
- •3.6.4. Сопоставление с известными примерами генерации колебаний.
- •3.6.5. Концентрация течения в отдельных плоскостях
- •3.6.6. Образование вихрей
- •3.6.7. Объемная и поверхностная турбулизация
- •3.6.8. Резюме к параграфу 3.6
- •Глава 4. Зернистая, или блоковая, структура реальной жидкости
- •4.1. Блоки и размытость фазовых переходов
- •4.1.1. Температурный интервал размытия т переходов
- •4.1.2. Экспериментальные данные [28, 30]
- •4.1.3. Оценка величины "кванта превращения" при других переходах
- •4.1.4. Размытость "концентрационных фазовых переходов"
- •4.1.5. "Надмолекулярный" характер соединений в твердом теле
- •4.1.6. Устойчивость соединений. Выделение химического и структурного слагаемых в энергии взаимодействия
- •4.2. Неоднородность течения реальной жидкости. Зернистая структура и соотношение коэффициентов вязкости и диффузии
- •4.2.1. Неоднородность течения
- •4.2.2. Оценка размеров "блоков течения" в жидкости
- •4.3. Наследование зернистой структуры при плавлении и кристаллизации
- •4.3.1."Наследственность"
- •4.3.2. Потоковая обработка
- •4.3.3. Термовременная обработка жидкого металла (тво) [24, 25]
- •4.3.4. Зародышеобразование и кинетика кристаллизации
- •4.3.5. Микронеоднородность эвтектических расплавов
- •4.3.6. Влияние слабых полей. Ультразвуковая обработка
- •4.3.7. Жидкий кристалл
- •4.3.8. Зависимость свойств поликристалла от размера зерна. Сверхпластичность. Дисперсионное упрочнение
- •4.4.9. Микрокристаллитная и коллоидная модель стекла
- •4.3.10. Состояние вопроса
- •4.4. Заключение к главе 4
- •Глава 5. Структурные дальнодействия и поверхностные явления
- •5.1. Дальнодействия в пленках и коллоидах
- •5.1.1. Дальнодействия в модели
- •5.1.2. Опытные данные по пленкам
- •5.1.3. Вязкие коллоиды и гели
- •5.1.4. Обсуждение опытных данных. Состояние вопроса
- •5.2. Дальнодействия в твердом состоянии
- •5.2.1. Масштабный фактор прочности
- •5.2.3. Дисперсионное упрочнение
- •5.2.4. О морфологии включений, фаз эвтектики, растущих кристаллов
- •5.2.5. Эффект ребиндера
- •5.2.6. Ориентирующие взаимодействия кристаллов
- •5.3. Выделение вклада дальнодействий в поверхностном натяжении
- •5.3.1. Дальнодействия, толстые пленки и их вклад в поверхностное натяжение
- •5.3.2. Термодинамические функции взаимодействия
- •5.3.3. Энтропия взаимодействия и оценки плотности упаковки, степени квантовости
- •5.3.4. Модель разорванных связей
- •5. 3. 5. Электронные теории поверхностного натяжения
- •5. 3. 6. Уточнение формулы для поверхностного натяжения чистых жидкостей
- •5.3.7.Поверхностное натяжение растворов
- •5.3.8.Аномально высокая поверхностная активность
- •5.3.9. Межфазное натяжение
- •5.3.10.Выделение вклада структурных дальнодействий и толстых пленок в поверхностное натяжение. Граница кристалл-жидкость в однокомпонентной системе
- •5.3.11. Граница кристалл-газ. Межзеренные границы
- •5.3.12. Зависимость температуры кристаллизации от размера капельки
- •5.3.13. Решетка и огранка малых частиц
- •5.4. Спекание и смачивание. Роль структурных дальнодействий и толстых пленок
- •5.4.1. Кинетический акт в традиционной модели
- •5.4.2. Кинетический акт спекания и смачивания в предлагаемой модели. Трение
- •5.4.3. Опытные данные по скорости самого акта спекания (кинетического звена)
- •5.4.4. Кинетическое сопротивление растеканию
- •5.4.5. Транспортное сопротивление спеканию и смачиванию.
- •5.5. Поверхностные свойства и дальнодействующие структурные
- •Глава 6. Корреляция параметров затвердевания и стабильности структуры с приведенной температурой и с мерой квантовости.
- •6.2.Превращения в начале и конце интервала затвердевания.
- •6.2.1. Начало интервала затвердевания или переход от состояния простой жидкости к состоянию реальной (затвердевающей) жидкости.
- •6.2.2. Конец интервала затвердевания.
- •6.2.3. "Точка стеклования" кристаллических веществ.
- •6.3.Общая сxема изменения кинетических свойств.
- •6.3.1. Общая схема изменения кинетических свойств при стекловании и кристаллизации.
- •6.3.2. Общий вид и истолкование политерм вязкости. Состояние вопроса.
- •6.3.3. Описание затвердевания в терминах вязкости и прочности. O качественном различии жидкости и твердого тела.
- •6.3.4. Тепловой эффект, сопровождающий повышение вязкости.
- •6.3.5. Химические классы жидкостей и стадии затвердевания.
- •6.4. Влияние атомарных квантовых эффектов.
- •6.4.1. Затвердевание и “степень квантовости”.
- •6. 4. 2. Влияние квантового параметра на tемпературу плавления.
- •6.5. Аналогичные закономерности для скорости химических реакций.
- •6.5.1. Подобие закономерностей для стабильности межмолекулярной и внутримолекулярной структуры. Постановка вопроса.
- •6.5.2. Зависимость стабильности внутримолекулярной структуры и “степени молекулярности” от квантового параметра.
- •6.5.3. Переходы от молекулярной формы к атомарной. Стёкла как промежуточные состояния.
- •6.5.4.Размягчение внутримолекулярной структуры при нагреве. Температурная зависимость энергий активации химических реакций.
- •6.5.5.Другие закономерности. Усреднение степени молекулярности компонентов раствора и катализ.
- •6.5.6. Перераспределение суммарной стабильности между внутри- и межмолекулярной структурой.
- •6.5.7. Перераспределение жесткости структуры и термодинамические характеристики плавления молекулярных веществ.
- •6.5.8.Простая атомарная многокомпонентная жидкость.
- •6.6. Заключение. Состояние вопроса.
- •6.6.1. Основные результаты.
- •7. Резюме.
- •Часть 2. - м.: Металлургиздат, 1966, 720 с.
2.1.3. Течение в модели при температурах около абсолютного нуля
Интересно выяснить поведение традиционной модели при Т 0, то есть при "предельном затвердевании". Практически условие Т 0 реализуется тем, что скорости всех частиц зануляются в конце каждого шага, как в работах [73, 74] и др.; это соответствует переходу к релаксационной процедуре. Смещение по данной координате х за шаг при нулевой начальной скорости пропорционально действующей силе fx: x = fx*t2/2m. Изображающая точка системы в координатном 3N - мерном фазовом пространстве перемещается к точке минимума энергии, то есть ко дну 3N - мерной потенциальной ямы или к точке равновесия, где U(х1,х2,...x3N) = min, по линии наиболее крутого спуска. В этом варианте компьютерного эксперимента могут идти лишь полностью безактивационные перегруппировки частиц; действительно, при релаксационной процедуре изображающая точка движется только в сторону понижения энергии U (роста энергии взаимодействия Uвз); активация ( рост U) невозможна. В этом варианте нет тепловых колебаний частиц и флюктуаций вычисляемых величин. Происходят лишь направленные перемещения частиц, соответствующие механизму течения. Механизм процессов выявляется наиболее ясно, не затемняется тепловыми колебаниями частиц. Если компьютер выдает результаты, например, с 7 значащими цифрами, то даже изменения в последней значащей цифре являются "физическими", несут информацию о механизме и темпе процесса атомарных перегруппировок. При обычном моделировании скорость случайного теплового движения значительна, изменения даже первой или второй значащих цифр каждого результата могут отражать не направленное протекание процесса, а только лишь случайные тепловые колебания рассчитываемой величины.
Таблица 2.1. Результаты определения кинетических коэффициентов вязкости , диффузии D, электропроводности ниже точки плавления методом молекулярной динамики
п/п |
Вещество |
Потенциал |
Т/Тпл |
, сПз |
D*105,см2/с |
, ом-1см-1 |
1 |
Ar |
6 - 12 |
0,24 |
5,3 |
0,53 |
- |
2 |
Ar |
6 - 12 |
0,24 |
4,2 |
0,46 |
- |
3 |
Ar |
6 - 12 |
1,20 |
0,35 |
0,57 |
- |
4 |
Ar |
4 - 8 |
0,12 |
0,13 |
0,10 |
- |
5 |
NaCl |
1 - 10 |
0,42 |
9,40 |
- |
- |
6 |
Pb |
Осцил. |
0,40 |
8,60 |
4,20 |
- |
7 |
Fe |
Осцил. |
0,40 |
7,40 |
3,40 |
- |
8 |
Оксид |
Ион-ков. |
0,40 |
5,00 |
- |
-- |
9 |
Ar |
6 - 12 |
0,24 |
6,00 |
- |
- |
10 |
Ar |
6 - 12 |
1,40 |
0,32 |
- |
- |
11 |
Ar |
4 - 8 |
0,24 |
0,10 |
- |
- |
12 |
Ar |
Ж. сферы |
0,24 |
0,15 |
- |
- |
13 |
Ar |
6 - 12 |
0,24 |
3,40 |
0,39 |
- |
14 |
Ar |
6 - 12 |
0,80 |
2,40 |
0,73 |
- |
15 |
Ar |
6 - 12 |
0,24 |
3,70 |
0,67 |
- |
16 |
NaCl |
1 - 10 |
0,23 |
- |
15,00 |
0,80 |
17 |
NaCl |
1 - 10 |
0,23 |
- |
8,00 |
1,40 |
18 |
NaCl |
1 - 10 |
0,60 |
- |
- |
3,00 |
19 |
NaCl |
1 - 10 |
0,60 |
- |
- |
0,20 |
20 |
Оксид |
Ион-ков. |
0,40 |
- |
6,00 |
2,40 |
21 |
Оксид |
1 - 10 |
0,60 |
- |
2,00 |
0,23 |
22 |
Оксид |
6 - 12 |
0,24 |
1,40 |
- |
- |
Продолжение таблицы 2.1. Параметры моделируемых процессов
N п/п |
Моделируемый процесс |
Скорость V, c-1 |
Напряжённость поля , B/см |
1 |
Вязкое течение |
4,9*107 |
- |
2 |
Вязкое течение |
4,9*108 |
- |
3 |
Вязкое течение |
6,9*109 |
- |
4 |
Вязкое течение |
6,9*109 |
- |
5 |
Вязкое течение |
4,0*109 |
- |
6 |
Вязкое течение |
4,0*108 |
- |
7 |
Вязкое течение |
4,0*108 |
- |
8 |
Вязкое течение |
4,0*108 |
- |
9 |
Течение при Р=1400 кгс/см2 |
- |
- |
10 |
Течение при Р=1400 кгс/см2 |
- |
- |
11 |
Течение при Р=1400 кгс/см2, "выключенном" притяжении |
- |
- |
12 |
Течение при Р=1400 кгс/см2 потенциал ж. cфер |
- |
- |
13 |
Релаксация напряжений |
- |
- |
14 |
Релаксация напряжений |
- |
- |
15 |
Релаксация формы |
- |
- |
16 |
Электроперенос |
- |
6,2*106 |
17 |
Электроперенос |
|
6,2*107 |
18 |
Электроперенос |
|
6,2*107 |
19 |
Электроперенос |
|
2,0*109 |
20 |
Электроперенос |
|
6,2*106 |
21 |
Плоскость, электроперенос |
|
6,2*107 |
22 |
Плоскость, вязкое течение |
3,0*1010 |
- |
Рис. 2.1. Зависимость напряжений сдвига Рx-Рy и энергии Uвз от времени деформации, или от числа шагов N
Таблица 2.2. Коэффициенты вязкости и диффузии при моделировании
деформации плоской и объёмной систем ( 98 и 108 частиц ); Т=0.
No |
Система |
, с-1 |
п |
/Tпл |
уп, Пз |
ср, Пз |
1 |
Пл. |
2,5*1010 |
2 |
0 |
2 |
- |
2 |
Пл. |
3,1*109 |
0,65 |
0 |
1,4 |
0,2 |
3 |
Пл. |
5,8*108 |
0,13 |
0 |
1,1 |
0,6 |
4 |
Пл. |
3,1*109 |
0,05 |
0 |
0 |
- |
5 |
Об. |
4,1*109 |
0,35 |
0 |
- |
0,12 |
6 |
Об. |
4,1*108 |
0,05 |
0 |
1,1 |
0,6 |
7 |
Об. |
4,3*107 |
0,007 |
0 |
- |
- |
8 |
Пл. |
6*108 |
0,07 |
0 |
- |
0,23 |
9 |
Пл. |
4*1010 |
1,0 |
0,5 |
0 |
- |
10 |
Пл |
4*1010 |
0,6 |
0,5 |
0 |
- |
11 |
Об. |
4*1010 |
1,0 |
0,25 |
0,04 |
0,01 |
Продолжение таблицы 2.2
No |
Dуп*105, см2/с |
Dср*105,см2/с |
max/G |
ср/G |
UвзUoвз |
1 |
4 |
110 |
0,12 |
0,04 |
- |
2 |
6 |
30 |
0,07 |
0,025 |
0,74 |
3 |
6 |
8 |
0,02 |
0,015 |
0,91 |
4 |
5 |
- |
-0,006 |
-0,003 |
0,79 |
5 |
- |
20 |
0,016 |
0,011 |
0,86 |
6 |
- |
16 |
0,009 |
0,005 |
0,96 |
7 |
7 |
- |
2*10-4 |
1,1*10-4 |
1,0 |
8 |
- |
9 |
- |
0,008 |
- |
9 |
- |
100 |
3*10-3 |
- |
- |
10 |
- |
200 |
0,01 |
0,06 |
- |
11 |
- |
250 |
0,032 |
0,015 |
- |
Рис. 2.2 Изменение структуры при деформации в плоской системе. Потенциал 6-12, Т ~ 0. Нет признаков хрупкого разрушения; видны образующиеся по ходу деформации вторичные местные упорядочения ("кластеры")
Рассмотрим подробно один из компьютерных экспериментов (рис. 2.2). Исходная система - идеальная плоская плотная упаковка частиц. Система растягивается "силовым полем" по ребру Х и сжимается по ребру У. При деформации протекают два конкурирующих процесса: вследствие роста степени деформации на d за время dt упругие напряжения возрастают на dt =Gd , где G - модуль сдвиговой упругости. С другой стороны, происходит релаксация напряжений, которую описывает формула Максвелла:
= O*exp(-Gt/) = O*exp(-t/Tr).
Здесь - искомая (определяемая) динамическая вязкость, Tr=/G - время релаксации. На первой стадии процесса до точки 1 рис. 2.1 идёт почти упругая деформация, напряжения сдвига возрастают почти по закону Гука, релаксация напряжений молозаметна. В точке 2, где напряжения максимальны, скорость релаксации напряжений сравнивается со скоростью их роста по закону Гука. Затем до точки 4 релаксация напряжений обгоняет их рост вследствие деформации. Получаются следующие мгновенные значения вязкости на разных стадиях процесса: точка1 на рис. 2.1., упорядоченная структура - 1,4 дПа*с; точка 2, переходная структура - 0,4; 3, аморфная структура - 0,1; 4,5 -смешанные структуры, 0,02 и 0,15 дПа*с . На стадии упорядоченной структуры ( точка 1) вязкость получается на 1- 2 порядка величины больше, чем на стадии аморфной структуры в точках 3,4. Коэффициент самодиффузии на стадии упорядоченной структуры cоставлял 4*10-4 , а на стадии аморфной - 11*10-4 см2/с.
Энергия взаимодействия убывает вследствие деформации и возрастает вследствие релаксации напряжений; сначала примерно до точки 2 преобладает первый процесс, затем - второй. Основные величины коэффициентов вязкости и самодиффузии, полученные для упорядоченных структур (уп, Dуп), а также средние значения для упорядоченных и аморфных структур, вычисленные в других компьютерных экспериментах, приведены в таблице 2.2. Все определения дают " жидкостные" значения кинетических свойств: вязкость ~ (100-10-2) Пз ( у воды ~ 10-2Пз ) коэффициенты самодиффузии - (10-4 - 10-5) см2/с. Реальные вещества около абсолютного нуля приобретают свойства хрупкого твердого тела, разрушающегося практически без деформации независимо от того, является ли их структура упорядоченной или разупорядоченной, кристаллической или же аморфной. Их коэффициенты вязкости и диффузии здесь выходят за пределы возможностей измерения; вязкость превышает 1020 Пз, а коэффициенты самодиффузии становятся меньше 10-16 см2/с.
Так как течение идёт при Т 0, то оно является "абсолютно безактивационным"; изображающая точка может двигаться лишь в сторону уменьшения энергии, невозможно преодоление даже малых энергетических барьеров. Эксперименты этого раздела надёжно подтверждают безактивационный характер перемещений частиц при релаксации напряжений и при вязком течении в традиционной модели.