
- •Глава 1. (введение). “кризис” кинетической теории. Необходимое изменение традиционной молекулярной модели. История и состояние вопроса
- •Глава 2. Компьютерное моделирование затвердевания. Отсутствие затвердевания в традиционной модели. Характер эффектов, стабилизирующих структуру
- •Глава 3. Квазикристаллические свойства жидкостей.
- •1.1.1. В традиционной модели нет затвердевания
- •1.1.3. Затвердевание как следствие нарастания атомарных квантовых эффектов
- •1.1.5. История вопроса об отсутствии затвердевания
- •1.1.6. Соотношение теории и опыта. Психологические аспекты
- •1.1.7. Общая физическая причина обсуждаемых дискуссий
- •1.1.8. Квазикристаллические свойства жидкости
- •1.2. Феноменологическое описание свойств жидкости и твердого тела, представление о их противоположности.
- •1.2.1. Прочность и дальний порядок
- •1.2.2. Формирование традиционной молекулярной модели жидкости и затвердевания
- •1.2.3. Успехи кинетической теории на основе традиционной модели
- •1.2.4. Современный вид традиционной модели
- •1.2.5. Аналитические оценки кинетических свойств
- •1.2.6.Выявление неадекватности модели. Анализ прочности на атомарном уровне
- •1.2.7.Структурный подход к плавлению
- •1.2.8. Энергии активации
- •1.2.9. Нарастание трудностей в истолковании фазовых переходов
- •1.2.10. Признаки застоя в молекулярной теории кинетических свойств
- •1.3. Заключение
- •1.3.1. Мировоззренческий характер традиционных взглядов. Влияние философии
- •Традиционная модель и философия
- •Традиционная модель и философия
- •Кризисы в разных областях исследования
- •1.3.2. О химической форме движения материи
- •1.3.3. Ориентировочные оценки и строгие методы. Математизация исследований
- •1.3.4.Математизация исследований. Вытеснение
- •1.3.5. Приближённые оценки
- •1.4. Заключение к главе 1
- •Глава 2. Компьютерное моделирование затвердевания. Характер эффектов, стабилизирующих структуру
- •2.1 Прямое моделирование процессов переноса. Отсутствие затвердевания в традиционной модели
- •2.1.1.Затвердевание как скачок кинетических свойств
- •2.1.2. Прямое компьютерное моделирование вязкого или пластического течения и ионного электропереноса
- •2.1.3. Течение в модели при температурах около абсолютного нуля
- •2.1.4. Релаксация механических напряжений. Деформация постоянной силой
- •2.2. Обсуждение результатов моделирования
- •2.2.1.Температурная зависимость кинетических свойств
- •2.2.2. Влияние вида парного потенциала
- •2.2.3. Молекулярный механизм пластической деформации или вязкого течения
- •2.2.4. Молекулярный механизм течения около абсолютного нуля
- •2.3. Кристаллизация. Устойчивость
- •2.3.1. Моделирование кристаллизации
- •2.3.2. Устойчивость решеток и сеток
- •2.3.3. Определение мягких мод в компьютерном эксперименте
- •2.4. Состояние вопроса об отсутствии затвердевания
- •2.4.1. Литературные данные
- •2.4.2. Расхождение традиционной модели с действительностью по дальнему порядку и размытости фазовых переходов
- •2.5. Затвердевание как переход в квантовую область. Подбор потенциала для стабилизирующих структуру эффектов
- •2.5.1. Затвердевание приходится на температуры перехода из классической области в квантовую
- •2.5.2. Подобие затвердевания и перехода к сверхтекучести
- •2.5.3. Диаграммы состояния других веществ в области около абсолютного нуля
- •2.5.4. Подбор поправки к потенциалу для выражения эффектов, стабилизирующих структуру
- •2.5.5. Влияние направленности и ковалентности связи
- •2.5.6. Другие свойства твердых тел, не объясняющиеся в рамках традиционной модели
- •2.6. Заключение к гЛаве 2. Состояние вопроса
- •Глава 3. Квазикристалличекие свойства жидкостей
- •3.1. Традиционная модель и квазикристаллические свойства. Состояние вопроса
- •3.1.1. Введение
- •3.2. Модуль сдвига и предел прочности жидкости
- •3.2.1. Экспериментальная часть
- •3.2.2. Обсуждение результатов. Состояние вопроса
- •3.2.3. Последействие
- •3.3. Особенности на политермах и структурные перестройки в жидкости
- •3.3.1. Превращение в жидком железе около 1640 oС
- •3.3.2. Превращения в силикатных расплавах
- •3.3.3. Политермы вязкости воды
- •3.3.4. Дифференциальные координаты
- •3.4. О дальнем порядке в жидкости
- •3.4.1. Экспериментальные данные
- •3.4.2. Огранка
- •3.4.3. Сопоставление с традиционным подходом. Состояние вопроса
- •3.5. Осцилляции
- •3. 6. Квазикристаллические свойства жидкости и генерация турбулентных пульсаций в гидродинамическом потоке. Состояние вопроса
- •3.6.1. Введение
- •3.6.2. История вопроса (по работам [12, 53, 133, 134])
- •3.6.3. Механизм генерации пульсаций в потоке при твердоподобном сопротивлении течению
- •3.6.4. Сопоставление с известными примерами генерации колебаний.
- •3.6.5. Концентрация течения в отдельных плоскостях
- •3.6.6. Образование вихрей
- •3.6.7. Объемная и поверхностная турбулизация
- •3.6.8. Резюме к параграфу 3.6
- •Глава 4. Зернистая, или блоковая, структура реальной жидкости
- •4.1. Блоки и размытость фазовых переходов
- •4.1.1. Температурный интервал размытия т переходов
- •4.1.2. Экспериментальные данные [28, 30]
- •4.1.3. Оценка величины "кванта превращения" при других переходах
- •4.1.4. Размытость "концентрационных фазовых переходов"
- •4.1.5. "Надмолекулярный" характер соединений в твердом теле
- •4.1.6. Устойчивость соединений. Выделение химического и структурного слагаемых в энергии взаимодействия
- •4.2. Неоднородность течения реальной жидкости. Зернистая структура и соотношение коэффициентов вязкости и диффузии
- •4.2.1. Неоднородность течения
- •4.2.2. Оценка размеров "блоков течения" в жидкости
- •4.3. Наследование зернистой структуры при плавлении и кристаллизации
- •4.3.1."Наследственность"
- •4.3.2. Потоковая обработка
- •4.3.3. Термовременная обработка жидкого металла (тво) [24, 25]
- •4.3.4. Зародышеобразование и кинетика кристаллизации
- •4.3.5. Микронеоднородность эвтектических расплавов
- •4.3.6. Влияние слабых полей. Ультразвуковая обработка
- •4.3.7. Жидкий кристалл
- •4.3.8. Зависимость свойств поликристалла от размера зерна. Сверхпластичность. Дисперсионное упрочнение
- •4.4.9. Микрокристаллитная и коллоидная модель стекла
- •4.3.10. Состояние вопроса
- •4.4. Заключение к главе 4
- •Глава 5. Структурные дальнодействия и поверхностные явления
- •5.1. Дальнодействия в пленках и коллоидах
- •5.1.1. Дальнодействия в модели
- •5.1.2. Опытные данные по пленкам
- •5.1.3. Вязкие коллоиды и гели
- •5.1.4. Обсуждение опытных данных. Состояние вопроса
- •5.2. Дальнодействия в твердом состоянии
- •5.2.1. Масштабный фактор прочности
- •5.2.3. Дисперсионное упрочнение
- •5.2.4. О морфологии включений, фаз эвтектики, растущих кристаллов
- •5.2.5. Эффект ребиндера
- •5.2.6. Ориентирующие взаимодействия кристаллов
- •5.3. Выделение вклада дальнодействий в поверхностном натяжении
- •5.3.1. Дальнодействия, толстые пленки и их вклад в поверхностное натяжение
- •5.3.2. Термодинамические функции взаимодействия
- •5.3.3. Энтропия взаимодействия и оценки плотности упаковки, степени квантовости
- •5.3.4. Модель разорванных связей
- •5. 3. 5. Электронные теории поверхностного натяжения
- •5. 3. 6. Уточнение формулы для поверхностного натяжения чистых жидкостей
- •5.3.7.Поверхностное натяжение растворов
- •5.3.8.Аномально высокая поверхностная активность
- •5.3.9. Межфазное натяжение
- •5.3.10.Выделение вклада структурных дальнодействий и толстых пленок в поверхностное натяжение. Граница кристалл-жидкость в однокомпонентной системе
- •5.3.11. Граница кристалл-газ. Межзеренные границы
- •5.3.12. Зависимость температуры кристаллизации от размера капельки
- •5.3.13. Решетка и огранка малых частиц
- •5.4. Спекание и смачивание. Роль структурных дальнодействий и толстых пленок
- •5.4.1. Кинетический акт в традиционной модели
- •5.4.2. Кинетический акт спекания и смачивания в предлагаемой модели. Трение
- •5.4.3. Опытные данные по скорости самого акта спекания (кинетического звена)
- •5.4.4. Кинетическое сопротивление растеканию
- •5.4.5. Транспортное сопротивление спеканию и смачиванию.
- •5.5. Поверхностные свойства и дальнодействующие структурные
- •Глава 6. Корреляция параметров затвердевания и стабильности структуры с приведенной температурой и с мерой квантовости.
- •6.2.Превращения в начале и конце интервала затвердевания.
- •6.2.1. Начало интервала затвердевания или переход от состояния простой жидкости к состоянию реальной (затвердевающей) жидкости.
- •6.2.2. Конец интервала затвердевания.
- •6.2.3. "Точка стеклования" кристаллических веществ.
- •6.3.Общая сxема изменения кинетических свойств.
- •6.3.1. Общая схема изменения кинетических свойств при стекловании и кристаллизации.
- •6.3.2. Общий вид и истолкование политерм вязкости. Состояние вопроса.
- •6.3.3. Описание затвердевания в терминах вязкости и прочности. O качественном различии жидкости и твердого тела.
- •6.3.4. Тепловой эффект, сопровождающий повышение вязкости.
- •6.3.5. Химические классы жидкостей и стадии затвердевания.
- •6.4. Влияние атомарных квантовых эффектов.
- •6.4.1. Затвердевание и “степень квантовости”.
- •6. 4. 2. Влияние квантового параметра на tемпературу плавления.
- •6.5. Аналогичные закономерности для скорости химических реакций.
- •6.5.1. Подобие закономерностей для стабильности межмолекулярной и внутримолекулярной структуры. Постановка вопроса.
- •6.5.2. Зависимость стабильности внутримолекулярной структуры и “степени молекулярности” от квантового параметра.
- •6.5.3. Переходы от молекулярной формы к атомарной. Стёкла как промежуточные состояния.
- •6.5.4.Размягчение внутримолекулярной структуры при нагреве. Температурная зависимость энергий активации химических реакций.
- •6.5.5.Другие закономерности. Усреднение степени молекулярности компонентов раствора и катализ.
- •6.5.6. Перераспределение суммарной стабильности между внутри- и межмолекулярной структурой.
- •6.5.7. Перераспределение жесткости структуры и термодинамические характеристики плавления молекулярных веществ.
- •6.5.8.Простая атомарная многокомпонентная жидкость.
- •6.6. Заключение. Состояние вопроса.
- •6.6.1. Основные результаты.
- •7. Резюме.
- •Часть 2. - м.: Металлургиздат, 1966, 720 с.
1.3.2. О химической форме движения материи
В конце прошлого века часто считали, что различие между механической (или физической) и химической формами движения материи определяется размерами движущихся объектов [46]. Так, соединение атомов в молекулу - химический процесс, а слипание более крупных коллоидных частиц - физическая коагуляция, хотя эти частицы могут связываться такими же химическими связями, как и атомы. Представлялось, что на шкале размеров имеется граница (около 10-7 см), выше которой располагается материал физики или механики, а ниже - химии. Это философское истолкование быстро устарело. Действительно, движение -частиц (то есть ядер гелия), изученных Резерфордом, а также движение электронов и их взаимодействие с веществом оказались явно физическими процессами, хотя на шкале размеров они лежат в "химической" области. Теперь материал химии образует на этой шкале как бы "остров", выше и ниже которого располагается материал физики. Однако многозначительным представляется тот факт, что выше химического по этой шкале располагается материал классической физики, а ниже - материал квантовой физики; материал химии располагается в переходной зоне от классической физики к квантовой, где h/kT 1. Видимо, это важный или даже определяющий признак химического процесса, химической формы движения материи. Практически материал химии укладывается в полосу значений h/kT от 0.1 до 10; в конденсированных состояниях это соответствует значениям энтропии S/R примерно от 0.1 до 10 на грамм-атом. Как отмечено выше (раздел 1.1.2), физические процессы релаксации напряжений, упорядочения (позиционного или по сорту), спекания, "рекристаллизации" и другие протекают за микроскопическое время порядка периода колебания в перегретой простой жидкости (выше Тп) и продолжаются, например, год и более, то есть практически не идут в затвердевшем состоянии ниже Тст/2. Выясняется [7], что внутримолекулярная структура, как и структура твердого тела, также "размягчается" при нагреве. Химические реакции, то есть процессы установления равновесия по внутримолекулярным связям, также протекают за время порядка периода колебания в простой атомарной жидкости, выше некоторой Тп, и требуют большого времени, более года, то есть практически не идут ниже Тст/2. Ниже Тст/2 эти процессы уже не воспринимаются как химические реакции; здесь мы имеем химически неизменное инертное твердое тело. Выше Тп они не воспринимаются как реакции, потому что протекают практически мгновенно. Кроме того, выше Тп уже нет соединений, существуют только растворы. Химическая форма движения материи укладывается в полосу от Тст/2 до Тп. Есть химия межмолекулярных реакций в газовой фазе и химия реакций в жидкой фазе, но нет химии межмолекулярных реакций в твердой фазе; при затвердевании такие реакции практически прекращаются. Правда, есть целая дисциплина - химия твердого тела, но она изучает в основном реакции атомарных твердых тел с газообразными или жидкими реагентами. Твердое тело выступает здесь лишь как один из реагентов, даже во "внутритвердотельных" реакциях. Около температур плавления (выше Тcт/2) с заметными скоростями идут также реакции между атомарными твердыми телами, интенсивно исследуемые в последнее время, в частности, в связи с процессами спекания материалов из смесей порошков. При охлаждении до температуры Тст/2 прекращаются и эти реакции, одновременно с физическими процессами или несколько раньше их. Рассмотрим для примера реакцию Fe + Si = FeSi, изученную металлургами [30]. Эта реакция в наиболее явном виде идёт несколько ниже температуры плавления FeSi (то есть при h/kT 1, в области затвердевания) когда, например, между частицами твердого железа и кремния растут прослойки интерметаллического соединения FeSi. При повышении температуры и переходе в область жидкого состояния признаки соединения FeSi становятся малозаметными, а при достаточном перегреве (видимо, около 2000oС) эти признаки практически полностью исчезают; смешение жидких железа и кремния здесь, в области простой жидкости (то есть в классической области (h/kT<<1)), идет как обычное растворение. В такой простой (по всем связям) жидкости вообще, видимо, нет соединений, есть только растворы. "Химическое равновесие", то есть равновесное распределение связей, здесь устанавливается практически мгновенно; "химическая релаксация", как и релаксация механических напряжений, может завершиться, например, за 10-12 с, и не воспринимается как химическая реакция. Таким образом, в области классической простой жидкости нет соединений и невозможно наблюдать реакцию; это - "чисто физическая" система. С другой стороны, при комнатных и более низких температурах реакцию также невозможно наблюдать, так как её скорость ничтожно мала; глубоко в квантовой области (h/kT 1) мы приближаемся к "абсолютно твёрдому телу", химически неизменному (инертному). Система снова становится "чисто физической". Выявляется, таким образом, широкая аналогия между химической реакцией и физическими процессами переноса, например, релаксацией механических напряжений. Те и другие процессы практически не идут в полностью затвердевшем состоянии (ниже Тст/2) и идут практически мгновенно и поэтому незаметны в состоянии простой атомарной жидкости, то есть при "полностью размягченных" связях, при Е 0. В обоих случаях реакции ненаблюдаемы, и системы воспринимаются как чисто физические. Характерное время как физических, так и химических процессов составляет макроскопическую величину, например, 1 минута, 1час в области затвердевания по соответствующим связям; далее, здесь существуют не только растворы, но и соединения; в этой области проявляется и наиболее явственно воспринимается "химическая форма движения материи", при h/kT 1. Некоторые приемы катализа химических реакций оказываются аналогичными методам разжижения вязкого расплава; такие способы ускорения физических и химических процессов сводятся к размягчению структуры за счет повышения среднего атомного веса и, тем самым, понижения "степени квантовости". Открываются возможности перенесения обширных имеющихся данных и закономерностей по вязкости для анализа менее изученной кинетики химических реакций. Правда, в рассмотренной системе Fe-Si все связи примерно равноценны; часто ситуация сложнее, и химические реакции идут по более прочным связям, по сравнению со взаимодействиями, определяющими вязкость и механическое затвердевание системы. В этом случае "затвердевание" и "размягчение" по связям реакции (и, соответственно, область явного протекания реакции) придётся на более высокие температуры, чем затвердевание-плавление. Нередко также практически недостижимы температуры "размягчения" по связям реакции, при которых энергия активации химической реакции становится практически нулевой, Ехр 0, а равновесное распределение связей достигается практически мгновенно и теряет "химическую" специфику. В целом представляется разумным связывать химическую форму движения материи с областью перехода от классической области к квантовой (по связям реакции).