Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kniga-pavlov-s.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.47 Mб
Скачать

6. 4. 2. Влияние квантового параметра на tемпературу плавления.

Согласно традиционным представлениям, температура плавления различных веществ должна приходиться на одинаковые значения приведённой энергии взаимодействия Uвз/RT или энтропии взаимодействия Sвз , относительной амплитуды колебаний атомов qс/q. Известное правило Линдемана утверждает, что все вещества плавятся при достижении одинаковой величины приведённой амплитуды колебаний, qс/q = const при Тпл. Правило Линдемана остаётся одной из наиболее применяемых закономерностей, связывающих температуру плавления с параметрами межатомных взаимодействий: Тпл = С(/AV2/3)1/2 ; С - постоянная Линдемана,  - температура Дебая.

Кристаллизация в традиционной модели, то есть переход беспорядок-порядок, подробно изучен к настоящему времени, как аналитически, так и с помощью компьютерных экспериментов [2, 4, 55, 56]. При одинаковом потенциале состояния различных веществ с равными значениями Uвз/RT (или с одинаковыми Sвз, Vс/V, qс/q) являются соответственными и моделируются одним компьютерным экспериментом. Хорошо изучено упорядочение (кристаллизация) в системе жёстких сфер. Упорядоченная система с плотнейшей шаровой упаковкой ГЦК или ГПУ разупорядочивается, если амплитуда атомных колебаний возрастает до qс/q  0,13, плотность упаковки Y и энтропия взаимодействия Sвз понижаются до значений соответственно Y  0,54, Sвз  6R. Эти величины Y и Sвз связаны соотношением Sвз = R*[(4Y-3Y2)/(1-Y)2] [78]. Приблизительно при этих же значениях Sвз ,Y , qс/q, Vс/V наступает разупорядочение или плавление и в моделях с более реальными потенциальными ямами, при этом оно приходится на значение приведенной температуры около RT/Uвз  0,02.

Однако реальные кристалличесие решетки часто оказываются значительно более устойчивыми к разупорядочению (плавлению), чем соответствующие структуры в модели. Это считается “настоящим вызовом теоретикам” [55]; реальные вещества плавятся при больших значениях qс/q, Vс/V, RTвз/Uвз, меньших Sвз и Y. Параметры плавления в модели и в действительности особенно сильно разнятся при большой степени квантовости h/kT. Это привело к предположению, что здесь также более точными будут двупараметрические кореляции, при втором параметре h/kTпл.

Пользуясь энтропией межатомного взаимодействия Sвз  3Rln(qc/ q), модельное правило Линдемана qc/q = const можно записать в форме термодинамического условия Sвз = const; возможности расчетов при этом намного увеличиваются.

На рисунке 6.17 представлены результаты проверки правила в форме условия Sвз = const для элементов периодической системы. Видно, что энтропия взаимодействия действительно примерно одинакова у всех веществ в точке плавления. В среднем Sвз  5,19R и среднеквадратичная ошибка (дисперсия) Sвз составляет 0,94R; температуры плавления элементов можно рассчитать из такого правила Линдемана со средней ошибкой примерно в два раза.

Разброс значений на графике или дисперсия (ошибка правила) уменьшается, если выделить группу веществ с близкими свойствами и без лёгких элементов. Например, щелочные металлы K, Rb, Cs попадают в узкий интервал 4,2 < Sвз/R < 4,35. Дисперсия несколько уменьшается также, если выделить группы элементов с одинаковой кристаллической решёткой предплавления. На рисунке 6.17 корреляции для ОЦК, ГЦК, ГПУ - элементов представлены отдельно.

Температура плавления также значительно точнее описывается двупараметрической зависимостью, как и рассмотренные выше политермы вязкости. Вторым параметром здесь также оказывается квантовый параметр h/kT или степень квантовости атомарной системы. Постоянная Линдемана С или величина энтропии взаимодействия в точке плавления сильно зависит от параметра h/kTпл (от Sпл) в этом состоянии.

Согласно правилу Линдемана, “различные вещества плавятся при достижении определённой относительной амплитуды колебаний. " Было проверено другое правило: “различные вещества плавятся при достижении определённой степени квантовости”, тоесть в точке плавления h/kT = const, S = const. Точность последнего условия получается примерно такой же, как и у самого правила Линдемана. Другие возможные условия или “правила” помимо этих, дают большую ошибку [203].

Статистическая обработка данных по корреляциям для ОЦК, ГЦК и ГПУ структурам рис.6.17 дала следующие уравнения:

ОЦК: Sвз - 0,24S = 2,23

ГЦК: Sвз - 0,21S = 2,81 ( 6.4 )

ГПУ: Sвз - 0,34S = 2,39

Эти уравнения можно рассматривать как новые “правила”, определяющие температуру плавления различных веществ с учётом уже двух факторов - плотности упаковки структуры и “степени квантовости”, то есть Sвз и S. Дисперсия или средняя ошибка этих “правил” составляет около 0,25R; с помощью такого условия Sвз - aS = const можно рассчитать температуру плавления в 3-4 раза точнее, чем по исходному правилу Линдемана или по условию постоянства “степени квантовости” - (h/kT) в точке плавления.

Полученные корреляции показали, что повышение величины квантовых эффектов приводит к более раннему затвердеванию при охлаждении. Квантовые эффекты способствуют затвердеванию, повышают стабильность упорядоченной структуры. Параметры реального плав-ления приближаются к теоретическим для традиционной модели лишь в области малых квантовых эффектов, то есть для тяжёлых и тугоплавких элементов и их соединений, для которых параметр h/kTпл составляет 0,1-0,2. Компьютерные эксперименты и аналитические решения дают плавление ( разупорядочение ) при :

Sвз = 6R; qс/q = 0,13; Vс/V = 0,002; Y = 0,54; RTпл/Uвз = 0,02

Рис.6.17 Корреляция плотности упаковки и степени квантовости в форме Sвз-S для температур плавления ОЦК, ГЦКи ГПУ - элементов (прямые 1,2,3). 4 - Та же корреляция для полиморфного превращения ОЦК - ГПУ. Вещества с большими значениями квантового параметра ( с меньшей S) плавятся при меньшей плотности упаковки атомов (меньшей Sвз).

Из рисунка 6.17 видно, что, по мере увеличения квантового параметра, величина Sвз всё больше удаляется вниз от теоретического значения 6R. В среднем для всех элементов Sвз  5,19R. Лёгкие и легкоплавкие вещества, которые имеют наибольшее значение параметра h/kTпл = (1-10) и являются “наиболее квантовыми”, плавятся при Sвз  (2,5-3,5)R, рис.6.17. Расчёт по приведённым выше формулам показывает, что “наиболее квантовые” вещества плавятся при повышенной почти на порядок величины приведённой температуре (RTпл/Uвз  (0.10-0,15) вместо 0,02), увеличенной относительной амплитуде колебаний (qс/q  (0,3-0,5) вместо 0,13), весьма низкой плотности упаковки “жёстких сердцевин” атомов Y порядка 0,2 (вместо 0,54).

Интересно, что атомарные вещества He, Ne, Ar здесь попадают в ту же корреляцию, как и молекулярные; важна суммарная степень квантовости и неважно, обусловлена ли она единственной связью данного атома в молекуле (H2, N2, CO), или же создаётся одинаковыми связями атома со всеми соседями, как в He, Ne, Ar. Гелий здесь не образует исключение, как во многих корреляциях; здесь он выступает не как отличная от других особая квантовая жидкость, или квантовый кристалл, а укладывается в общую закономерность. При увеличении давления и, соответственно, температуры плавления, степень квантовости гелия уменьшается, и приведённая температура плавления приближается к нормальной величине; при увеличении Рпл до 13900 атм и Тпл = 77,3 К приведённая температура плавления понижается уже с 10.7*10-2 до 3,5*10-2. В целом повышение приведенной температуры плавления у веществ из легких элементов видно из табл. 3.

“Степень квантовости” веществ здесь выражена величиной квантового понижения теплоемкости С и принята равной (3R/C-1); эта величина в данном случае удобнее, так как для ряда веществ есть данные по теплоемкости, но нет по энтропии.

Обычно считается, что у таких жидкостей, как вода и углеводороды, величина квантовых эффектов незначительна. Однако даже в точке плавления льда его теплоёмкость составляет лишь половину классического значения 3R; примерно половина степеней свободы “выморожена”, параметр (h/ kT)ср  4 значителен и, соответственно, приведённая температура плавления льда (а также CH4, NH3 и др.) заметно повышена ( 0,054; 0,085; 0,062 вместо 0,02, см. таблицу). Повышение температуры плавления у рассмотренных жидкостей с высокими значениями h/kT приводит к тому, что температура плавления приближается у них к температуре кипения. Отношение Тпл/Ткип повышается до 0,7 - 0,95, тогда как у “нормальных” (тяжелых) веществ и в модели - Тпл/Ткип - (0,25 - 0,4). Ряд таких закономерностей приведены в монографии Уббелоде [29]. Например, у воды температура плавления (0 oС) выше, чем у тяжелой и “малоквантовой” ртути, (-40 oС) хотя температура кипения (100 oС) намного ниже (357 oС).

Вещество

Тпл, К

”степень квантовости” 3R/C-1

Приведённая Тпл (RTпл/Uвз)*102

Тпл/Ткип

Вещества из легких элементов:

He

1,8

20

10

-

He

2,0

15

10,4

-

He

4,0

10

10,7

-

He

14

2,3

8,8

-

He

77,3

0

4,8

-

Ne

24, 3

0,5

10

0,9

H2

14

10

14

0,7

D2

19

6

11

0,8

N2

63

0,3

15

0,8

CO

68

0,15

10

0,85

NH3

195

1

6,2

0,8

H2O

273

1

5,4

0,73

CH4

90

5

8,5

0,9

C2H6

90

3

5,2

0,46

C6H14

178

2

3,4

0,52

C20H42

310

2

2,0

0,50

Вещества из тяжелых элементов:

Hg

233

0

3,5

0,33

K

336

0

4,5

0,32

Pb

600

0

2,6

0,29

Fe

1808

0

3,7

0,25

В модели

--

2,0

0,2

30,3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]