
- •Глава 1. Основные понятия координационной теории
- •1.1. Комплексообразователь
- •1.3. Дентатность лиганда
- •1.4. Координационное число
- •1.5. Внутренняя и внешняя сфера комплексного соединения
- •1.6. Многоядерные комплексы
- •Глава 2. Номенклатура комплексных соединений
- •2.1. Названия лигандов
- •2.2. Порядок перечисления лигандов
- •2.3. Нейтральные комплексы
- •2.4. Комплексные катионы
- •2.5. Комплексные анионы
- •2.6. Мостиковые группы и многоядерные комплексы
- •Глава 3. Строение комплексных соединений
- •3.1. Координационное число 2
- •3.2. Координационное число 3
- •3.3. Координационное число 4
- •3.4. Координационное число 5
- •3.5. Координационное число 6 и выше
- •Глава 4. Изомерия комплексных соединений
- •4.1. Изомерия лигандов
- •4.2. Геометрическая изомерия
- •4.3. Оптическая изомерия
- •4.4. Сольватная (гидратная) изомерия
- •4.5. Ионная изомерия
- •Глава 5. Устойчивость кс в растворе
- •5.1. Комплексные соединения без внешней сферы
- •5.2. Отщепление ионов внешней сферы
- •5.3. Обратимая диссоциация комплексов
- •5.4. Ступенчатая и полная константы образования
- •5.5. Константы образования и прочность комплексов
- •5.6. Константы нестойкости
- •5.7. Примеры образования и разрушения комплексов
- •Глава 6. Квантовомеханические теории строения комплексных соединений
- •6.1. Теория валентных связей
- •6.2. Гибридизация орбиталей и структура комплексов
- •6.4. Цветность комплексных соединений
- •Глава 7. Типы комплексных соединений
- •7.1. Аквакомплексы
- •7.2. Гидроксокомплексы
- •7.3. Аммиакаты
- •7.4. Ацидокомплексы
- •7.5. Анионгалогенаты
- •7.6. Катионгалогены
- •7.7. Гидридные комплексы
- •7.10. Хелаты
- •Глава 8. Элементы Периодической системы д.И. Менделеева: способность к образованию комплексов
- •8.1. Элементы s-секции
- •8.2. Элементы p-секции
- •8.3. Элементы d-секции
- •8.4. Лантаноиды и актиноиды
Комплексные ионы. Комплексные соединения . Реакции комплексообразования Координационные соединения.
В различных реакциях, протекающих в растворе, мы обнаруживаем участие неизменных группировок атомов, выступающих либо в виде ионов (SO42 , OH, NO2, CO32, NO2+ и т.д.), либо в виде нейтральных молекул (NH3, CO, NO и других). Эти группировки атомов способны к взаимодействию в растворе с ионами металлов или нейтральными молекулами с образованием более сложных частиц.Н., ион Cu2+взаимодействует в растворе с молекулами NH3 по обратимой реакции с образованием сложного катиона:
Cu2+ +
4 NH3
[Cu(NH3)4]2+
а ион Fe2+ легко присоединяет ионы CN, образуя сложный анион:
Fe2+ + 6 CN [Fe(CN)6]4
Молекула SnCl4 может присоединить два иона Cl и образовать сложный анион:
SnCl4 + 2 Cl [SnCl6]2
Две молекулы BF3 и NH3 могут взаимодействовать с образованием более сложной частицы:
BF3 + NH3 [B(NH3)F3]0
Можно привести множество других примеров подобного рода. Во всех случаях знак обратимости подчеркивает, что образование сложных частиц (ионов и молекул) не протекает до конца.
Образовавшиеся новые соединения приобретают новые свойства, отличные от свойств составляющих их простых соединений – например, совершенно иную окраску, растворимость и способность взаимодействовать с различными реагентами. Так, иодид ртути(II) взаимодействует в растворе с нитратом серебра с образованием малорастворимого иодида серебра:
С 2 HgI2 + 2 AgNO3 = 2 AgI + Hg(NO3)2
После образования сложного соединения с иодидом калия по реакции
HgI2 + 2 KI = K2[HgI4]
свойства иодида ртути(II) как индивидуального вещества исчезают. Продукт состава K2[HgI4] обладает другими химическими свойствами, поскольку образовавшийся сложный анион [HgI4]2 ведет себя в обменных реакциях как неразрывное целое:
K2[HgI4] + 2 AgNO3 = Ag2[HgI4] + 2 KNO3
С 3 . Подобные сложные образования получили название комплексных ионов или молекул.
Таким образом, комплексным соединением называют сложное соединение, образующееся при взаимодействии более простых неизменных частиц (атомов, ионов или молекул), каждая из которых способна существовать независимо в обычных условиях.
Реакции, в результате которых образуются комплексные соединения, носят название реакций комплексообразования.
Комплексные соединения называют часто координационными соединениями, подчеркивая способность простых неизменных частиц определенным образом располагаться (координироваться) друг около друга в комплексном ионе или комплексной молекуле.
Природу химических связей в комплексах, их строение и принципы их образования объясняет координационная теория.
Глава 1. Основные понятия координационной теории
С 4, 72. Основы современной координационной теории были изложены в конце прошлого века швейцарским химиком Альфредом Вернером, обобщившим в единую систему весь накопившийся к тому времени экспериментальный материал по комплексным соединениям. Им были введены понятия о центральном атоме ЦА (комплексообразователь) и его координационном числе, внутренней и внешней сфере комплексного соединения, изомерии комплексных соединений, предприняты попытки объяснения природы химической связи в комплексах.
1.1. Комплексообразователь
С5.Образование комплексного иона или нейтрального комплекса можно представить себе в виде обратимой реакции общего типа:
M + n L [MLn]
где M – нейтральный атом или положительно или отрицательно заряженный условный ион, объединяющий (координирующий) вокруг себя другие атомы, ионы или молекулы L. Атом M получил название комплексообразователя или центрального атома.
Вкомплексныхионах [Cu(NH3)4]2+, [SiF6]2 , [Fe(CN)6]4 , [BF4] комплексообразователями являются медь(II), кремний(IV), железо(II), бор(III). Чаще всего комплексообразователем служит атом элемента в положительной степени окисления. Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей редко. Это, например, атом азота(-III) в катионе аммония [NH4]+ и т.п.
Атом-комплексообразователь может обладать нулевой степенью окисления: карбонильные комплексы никеля и железа, имеющие состав [Ni(CO)4] и [Fe(CO)5], содержат атомы никеля(0) и железа(0).
Комплексообразователь (выделен синим цветом) может участвовать в реакциях получения комплексов, как будучи одноатомным ионом, например:
Ag+ + 2 NH3 [Ag(NH3)2]+ ; Ag+ + 2 CN [Ag(CN)2]
так и находясь в составе молекулы:
SiF4 + 2 F [SiF6]2
[I(I)2];
PH3 + H+ [PH4]+ ;
BF3 + NH3 [B(NH3)F3]
С8. В комплексной частице может быть два и более атомов-комплексообразователей. В этом случае говорят о многоядерных комплексах.
Комплексное соединение может включать несколько комплексных ионов, в каждом из которых содержится свой комплексообразователь. Например, в одноядерном комплексном соединении состава [K(H2O)6][Al(H2O)6](SO4)2 комплексообразователи KI и AlIII, а в [Cu(NH3)4][PtCl6] - CuII и PtIV.
1.2. Лиганды. С6. В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы, имеющие химические связи с комплексообразователем, называются лигандами (от латинского "ligare" - связывать). В комплексных ионах[SnCl6]2и [Fe(CN)6]4лигандами являются ионы Cl и CN, а в нейтральном комплексе [Cr(NH3)3(NCS)3] лиганды – молекулы NH3 и ионы NCS
Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. В отдельных случаях наблюдается межмолекулярное взаимодействие лигандов с образованием водородных связей.
С 7,9. Лигандами могут быть различные неорганические и органические ионы и молекулы. Важнейшими лигандами являются ионы CN, F , Cl, Br, I, OH, SO3S2, C2O42, CO32, молекулы H2O, NH3, CO, карбамида (NH2)2CO, органических соединений – этилендиамина NH2CH2CH2NH2, -аминоуксусной кислоты NH2CH2COOH и этилендиаминтетрауксусной кислоты (ЭДТА):
и другие.