Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TEORIYa-TERVER_FAJNAL (1).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.9 Mб
Скачать

32. Выведите формулу для дисперсии выборочной средней бесповторной выборки.

Выборочная дисперсия Db- среднее арифметическое квадрата отклонения наблюдаемого значения признака от их среднего значения . Если все значения х12+…+хn выборки v n различны, то DB=

Если значения признака х12,…хn имеют соответствующие частоты n1,…nk; n1+…+nk=n

DB=

D=

D= = = =

33. Пусть - вероятность k успехов в серии n независимых испытаний с вероятностью успеха p в каждом испытании. При каком k вероятность достигает максимума? Совпадает ли это число с математическим ожиданием количества успехов? Чему равна сумма ?

Рассмотрим два соседних числа и . Между ними имеет место одно из соотношений: (меньше, равно или больше) или, что эквивалентно, . Подставляя вместо числителя и знаменателя их выражения по формулам , или учитывая, что , получим соотношения или . Собирая все слагаемые с множителем k и учитывая , что p+q=1 , получим эквивалентные соотношения . Обозначим число np+p через . Тогда перепишется : .

Таким образом, для всех значений k меньших чем справедливо неравенство , для ( это возможно только в том случае, когда - целое число) имеет место равенство , наконец, при выполняется неравенство . Тем самым при значениях функция возрастает, а при значениях убывает. Следовательно, если число не является целым, то функция имеет единственный максимум; он достигается при ближайшем к слева целом значении k , т.е. при таком целом , которое заключено между -1 и :

np-q< <np+p, =[np+p].

Если же - целое число, то два равных между собой максимума достигается при и .

Если число не является целым, то наиболее вероятное число успехов равно ближайшему к слева целому числу. В случае когда есть целое число, наиболее вероятное число успехов имеет два значения: -1 и . Сумму не знаю как посчитать.

34. Может ли наиболее вероятное число успехов в схеме Бернулли отличаться от математического ожидания числа успехов на 2? Ответ обоснуйте.

По схеме Бернулли наиболее вероятное число успехов: k=np+p.

Мат. ожидания: так как схему Бернулли можно представить как биноминальное распределение M(x)=np

np+p-np=p Следовательно, в схеме Бернулли наиболее вероятное число успехов может отличаться от мат. ожидания на число р - вероятность успеха и известно, что p+q=1, p=1-q p<1. А значит отличаться на 2 не может.

35. Запишите локальную приближенную формулу Лапласа, приведите основные свойства функции Гаусса ϕ (x) и укажите ее график. При каких условиях данная формула дает хорошее приближение? Какие условия применимости отличают эту формулу от приближенной формулы Пуассона?

Если число опытов достаточно велико но не бесконечно, а вероятность появления события А в каждом опыте не стремится к 0, применяют локальную и интегральную теоремы Лапласа

Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р причем 1>р>0, то это событие наступает ровно m раз приблизительно равна

36. Запишите интегральную приближенную формулу Лапласа и приведите основные свойства функции Лапласа Φ(x) . При каких условиях данная формула дает хорошее приближение?

Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р, причем 1>р>0, то событие А наступит не менее m1 раз и не более m2 раза приблизительно равно

Эта формула дает хорошее приближение при больших n

37. Укажите выражение для функции Лапласа Ф(x). Докажите нечётность функции Ф(x) и нарисуйте график y=Ф(x). Чему равно Ф(12)?

Функция: Ф(x) =

Доказ-во Ф(-x) = -Ф(x): запишем выражение Ф(-x) = и выполним замену z = -t, dz = -dt, при этом нижний предел интегрирования не изменится, а верхний станет равным x. Таким образом, Ф(-x) = = -Ф(x), ч.т.д.

График: симметричен относительно начала координат, проходит через (0;0). Горизонтальные асимптоты: -0,5 и 0,5.

Ф(12) = 0,5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]