- •Особенности человека как объекта генетических исследований.
- •Генные мутации.
- •Хромосомные мутации.
- •Геномные мутации.
- •Генные болезни.
- •Генетический полиморфизм людей.
- •Ядерный геном человека.
- •8. Мутационная изменчивость.
- •Комбинативная изменчивость.
- •Модификационная изменчивость.
- •Строение гена прокариот.
- •Строение оперона прокариот.
- •Строение гена эукариот.
- •5. Посттранскрипционные процессы. Процессинг (созревание рнк).
- •Строение зрелой иРнк эукариот.
- •21. Репарация у эукариот.
- •1. Ферменты репарации определяют место большинства повреждений на молекуле днк по её локальной денутурации в месте повреждения.
- •23. Кариотип человека.
- •24. Генная терапия.
- •25. Генеалогический метод антропогенетики.
- •26. Популяционно-статистические методы антропогенетики.
- •27. Цитогенетические методы антропогенетики.
- •Генетический код.
5. Посттранскрипционные процессы. Процессинг (созревание рнк).
Это совокупность процессов обеспечивающих превращение синтезированной РНК (РНК-транскрипта) в функционально активные РНК (зрелые РНК), которые могут быть использованы при синтезе белков. Сами РНК-транскрипты функционально не активные. Процесс характерен для эукариот.
В результате процессинга изменяется структура и химическая организация РНК. РНК-транскрипт до образования зрелой РНК носит название про-иРНК (или в зависимости от вида РНК – про-тРНК, про-рРНК), т.е. предшественница РНК. Практически все РНК-транскрипты эукариот и прокариот (за исключением иРНК прокариот) подвергаются процессингу. Превращение РНК-транскрипта в зрелую РНК начинается в ядре, когда синтез РНК ещё не закончен и она не отделилась от ДНК. В зависимости от механизмов различают несколько этапов созревания РНК.
Взаимодействие про-иРНК с белком.
Метилирование про-иРНК.
Кэпирование 5’-конца.
Полиаденилирование.
Сплайсинг .
Графическая последовательность этапов изображена на рисунке 58. Следует отметить, что в живых организмах все вышеперечисленные процессы идут параллельно друг другу.
а. Взаимодействие про-иРНК с белком.
У бактерий ещё до окончания транскрипции 5’ конец транскрипта сразу же соединяется с рибосомой и иРНК включается в трансляцию. Поэтому, для бактериальной иРНК практически никакая модификация не требуется. У эукариот, синтезированный транскрипт выходит из ядра, попадает в цитоплазму и там соединиться с рибосомой. На своём пути он должен быть ограждён от случайных встреч с сильными реагентами и, в тоже время быть, доступен ферментам процессинга. Поэтому РНК-транскрипт сразу же по мере удлинения взаимодействует с белком. Здесь уместна аналогия – РНК-транскрипт располагается на белке как на операционном столе, он фиксируется химическими связями, одновременно в нём становятся доступными места модификации. РНК, связанная с белком, носит название рибонуклеопротеид ( информосома). В такой форме транскрипт находится в ядре. При выходе из ядра одни РНК продолжают оставаться в соединении с белком, другие выходят из комплекса и принимают участие в трансляции.
б. Метилирование про-иРНК.
Чаще всего происходит у бактерий, у которых имеется специальный аппарат защиты от чужеродной ДНК (вирусной, фаговой). Этот аппарат состоит из целого ряда ферментов разрезающих чужеродную ДНК или РНК в определённых сайтах в которой находится специфическая последовательность нуклеотидов. Ферменты носят название – рестриктазы. Понятно, что собственный, только что синтезированный РНК-транскрипт, также может быть подвергнут атаке рестриктаз. Чтобы это не случилось специальные ферменты, называемые метилазы, метилируют собственный РНК-транскрипт в тех сайтах, которые могут быть разрезаны собственными ферментами. У эукариот РНК-транскрипт метилируется в меньшей степени.
Промотор
Терминатор
Транскрипция
Про-иРНК
Про-иРНК фикси- Белок
рванная на белке
М
етилирование
про-иРНК
Кэпирование про-иРНК
П
олиаденилирование
Сплайсинг (см. далее)
Рис. 58. Схема основных моментов процессинга.
в. Кэпирование 5’конца.
Заключается в химическом и конформационном изменении 5’конца синтезированной РНК. Кэпирование происходит в момент синтеза РНК, ещё до её отделения. Процесс заключается в присоединении к свободному концу про-РНК специальных химических веществ, которые изменяют конформацию концевого участка. Кэпирование необходимо для инициации процесса трансляции.
Специальные ферменты присоединяют к 5’концу про-иРНК ГДФ (гуанозиндифосфат), а затем метилируют его.
ГДФ
5’
про-иРНК
СН3
КЭП = ГДФ + СН3
Рис.59. Структура КЭПа на 5’конце пре-иРНК эукариот.
Функции КЭПа.
Инициирует синтез белка.
Предохраняет про-иРНК от распада.
Участвует в удалении интронов.
г. Полиаденилирование.
Это процесс присоединения к 3’ концу про-иРНК 100 – 200 остатков адениловой кислоты. Эти остатки носят название поли-А последовательности (поли-А хвосты). Полиаденилированию подвергаются не все про-иРНК. Например, молекулы всех типов гистонов не содержат поли-А последовательности. Полиаденилирование предохраняет иРНК от разрушения.
На растущей цепи и-РНК имеется специальная последовательность нуклеотидов (ААУААА). Особый фермент ( полиА-полимераза) находит это сочетание нуклеотидов, разрезает про-иРНК в этом месте и формирует полиадениловый хвостик.
Значение поли –А последовательностей:
Облегчают выход иРНК из ядра в цитоплазму.
Предохраняют иРНК от разрушения.
Недавно было выявлено ещё одно интересное свойство поли-А последовательностей – они участвуют в терминации синтеза про-иРНК. РНК-полимераза, формируя последовательность ААУААА в про-иРНК, получает сигнал о завершении синтеза РНК-транскрипта. Но синтез сразу не прекращается. Полная остановка его наступает после того, как РНК-полимераза встречает на матричной нити ДНК специфическую последовательность нуклеотидов (у разных генов она разная), которая и даёт окончательный сигнал о прекращении синтеза РНК.
ГТФ ПолиА - последовательность
рАрАрАрАрАрАрАрА-ОН
СН3
КЭП = ГТФ + СН3
Рис. 60. Структура КЭПа на 5’конце про-иРНК эукариот и полиадениловая последовательность на 3’конце про -иРНК.
д. Сплайсинг.
В РНК-транскрипте содержится определённое количество нуклеотидных последовательностей, которые были необходимы для успешного завершения трансляции и последующей модификации транскрипта (кэпирования, полиаденилирования и т.д.). Для выполнения основной роли РНК в цитоплазме – трансляции, эти последовательности не только не будут иметь функционального значения, но могут помешать нормальному течению синтеза белка. Поэтому в клетке предусмотрен механизм освобождения первичного транскрипта от целого ряда последовательностей, не имеющих решающего значения в трансляции.
К таким последовательностям прежде всего относят интроны.
Ген, с которого транскрибировалась про-иРНК содержит кодирующие и некодирующие последовательности. Кодирующие последовательности гена определяют аминокислоту и их последовательность в белке. Не кодирующие последовательности таким свойством не обладают. Кодирующие и некодирующие последовательности в гене чередуются, и их количество зависит от индивидуальных генов. В первичном транскрипте также содержатся кодирующие и некодирующие последовательности. Такая организация генов и про-РНК характерна для эукариот. Некодирующие последовательности про-иРНК носят название интроны, а кодирующие – экзоны. Длина интронов может быть от 50 до 12000 нуклеотидов. Ген начинается и
кончается экзоном. Прерывистое строение гена характерно для большинства эукариот. Интроны могут содержать все виды РНК – иРНК, тРНК, рРНК.
Вся совокупность экзонов (кодирующих белки) в геноме человека занимают всего 1,1 – 1,4 %. Средний ген человека содержит 9 интронов. По мере упрощения
организации организмов совокупная величина их экзонов возрастает (например у бактерий она равна 86%).
В вырезании интронов из РНК-транскрипта и сшивании оставшихся экзонов, принимает участие многокомпонентный комплекс. Основными его составляющими являются малые ядерные РНК (мяРНК) и белки-ферменты.
В целом комплекс носит название малые ядерные рибонуклеопротеиды, мяРНП или сплайосома. Сам процесс достаточно сложен и состоит из нескольких этапов (см. рис. 58).
1. Формирование сплайосомы. К началу и концу интрона прикрепляются фрагменты белка и мяРНК (рис. 56, Д) формируя сплайосому. (рис. 56, Д) Прикрепление комплекса мяРНП (рис. 56, Е).
Экзон 1 Интрон
Экзон 2
А
Д
Б
Е
В
Петля
интрона вырезана
Г
Ж
Рис. 61. Схема сплайсинга (объяснение в тексте).
Сближение соседних экзонов, за счёт образования петли интрона. Разрезание на границе экзон-интрон и соединение соседних (первого и второго) экзонов(рис. 56, В).
Удаление и разрушение петли и сплайосоме (рис. 56, Г, Ж).
Необходимо отметить, что при повреждении (мутации) интрона сплайсинг может быть не закончен, интрон не вырезан и конченый продукт – иРНК будет нести несвойственные ей последовательности нуклеотидов. Понятно, что это может привести к нарушению трансляции и выключению из метаболизма определённого белка
е. Альтернативный сплайсинг.
Такой тип сплайсинга происходит при экспрессии одного и того же гена в разных тканях.
Сущность его в том, что один и тот же участок гена в разных тканях может выступать в качестве интрона и экзона. Это приводит к образованию разных иРНК, которые кодируют белки с различной ферментативной активностью.
Так в клетках щитовидной железы синтезируется гормон кальцитонин. Он тормозит высвобождение кальция из костей. Ген, контролирующий синтез каль-
Ген, контролирующий кальцитонин
э и э и э и э и э и э
Д
НК
1 2 3 4 5 6
э и э и э и э и э и э
про-иРНК
1 2 3 4 5 6
В щитовидной железе В клетках головного мозга
иРНК
1 2 3 4 1 2 3 5 6
Кальцитонин Кальцитонинподобный белок
Рис.62. Альтернативный сплайсинг кальцитонина и кальцитонин-подобного белка.
цитонина, состоит из 6 экзонов, первичный транскрипт этого гена ( про-иРНК) также состоит из 6 экзонов (рис. 62). Из первичного транскрипта формируется зрелая иРНК содержащая 4 экзона – 1,2,3,4. Экзоны № 5 и 6 были прочитаны как интроны и вырезаны. На основе такой и РНК синтезируется кальцитонин. В клетках головного мозга из первичного транскрипта, содержащего 6 экзонов, формируется зрелая иРНК, состоящая из 5 экзонов – 1,2,3,5,6. Четвёртый экзон был вырезан как интрон. Такая иРНК контролирует синтез кальцитонинподобного белка, отвечающего за вкусовое восприятие.
Другой ген Icarus ( в названного в честь легендарного Икара) способен обеспечить за счёт альтернативного сплайсинга синтез 6 различных полипептидов. Кроме этого полипептиды образуют между собой в клетке около 20 различные ансамбли из одних и тех же полипептидов или различных.
16-17. Трансляция у про- и эукариот.
Трансляция – это процесс переноса информации (декодирование её) в рибосомах с иРНК в аминокислотную последовательность белка.
а. Инициация.
Рибосомы находятся в цитоплазме в трёх состояниях:
- диспергированном, когда большая и малая субъединицы находятся отдельно друг от друга,
- в состоянии комплекса, когда малая и большая субъединица объединены в один ансамбль, а между ними проходит иРНК.
- в форме полиробосомы (полисомы) – на одну нить иРНК «нанизаны» несколько рибосомальных комплексов. Каждый из них синтезирует белок.
В инициации происходит процесс формирования инициаторного комплекса. В это процесс входят три следующих друг за другом этапа.
1. Малая субъединица рибосомы определяет 5’ конец иРНК, содержащий «кэп», и присоединяется к нему.
2. Скользя по иРНК, малая субъединица «находит» расположенный вблизи «кэпа» стартовый кодон. В этом месте субъединица останавливается и фиксируется на иРНК. Сформировалась система, состоящая из двух элементов - малой субъединицы и нити иРНК. Система устроена таким образом, что в малой субъединицы располагаются только 2 кодона, каждый из них занимает свою активную область или центр или П (пептидильный) или А (аминоацильный). Стартовый кодон располагается в функциональном центре «П». В другом функциональном центре (А) располагается кодон первой аминокислоты входящей в белок. Еще раз подчеркнём, что два функциональных центра в малой субъединице не активны. Они активируются только при присоединении большой субъединице, в которой находятся аналогичные центры П и А.
У многих организмов стартовый кодон (или инициирующий кодон) в иРНК содержит триплет комплементарный антикодону аминоацил-тРНК несущий метионин. С метионинового кодона, как правило, начинается синтез белка.
3. К стартовому кодону, находящемуся в «П» участке, прикрепляется аминоацил-тРНК, несущая аминокислоту метионин. Комплекс, состоящий из малой субъединице рибосомы, иРНК, метиониновой-тРНК называют инициаторный комплекс.
б. Элонгация
Как только к инициаторному комплексу присоединяется большая субъединица рибосомы, начинается этап инициации. С присоединением большой субъединицы в рибосоме формируются два полноценных функциональных центра «П» и «А». В обоих центрах размещаются только два кодона иРНК. В центре «П» находится метиониновая-тРНК, а к участку «А», который открыт в цитоплазму, пробуют присоединиться аминоацил-тРНК несущие разные аминокислоты. Присоединяется только та аминоацил-тРНК, антикодон которой комплементарен кодону иРНК, находящемуся в «А» участке.
Инициаторный
комплекс
3’
Б
А
3’ 3’
Г
В
3’ 3’
Д
Е
3’ 3’
Ж З
Рис. 67. Схема трансляции. А – компоненты аппарата трансляции (малая, большая субъединицы рибосом, иРНК, аминоацил-тРНК, тРНК и аминокислоты) в цитоплазме перед началом синтезе белка. Б – инициаторный комплекс. В – начало элонгации. Большая и малая субъединица соединены, в функциональном центре «П» аминоацил-тРНК с метионином (М). Г – в функциональном центре «А» аминоацил-тРНК с триптофаном (Т). Д – соединение аминокислот метионина и триптофана в функциональном центре «А». Ж – перемещение аминокислот вместе с ДНК в центр «П». З – центр «А» заполнен аминоацил-тРНК, которая несёт аминокислоту глицин (Г).
Специальные ферменты соединяют пептидной связью две аминокислоты находящиеся в функциональных участках между собой (рис. 67, Д). Одновременно происходит разрыв между тРНК и аминокислотой метионином. Метионин остаётся присоединённым к триптофану в участке «А», а в участке «П» находится освобождённая от аминокислоты тРНК (рис. 67, Е). Специальный фермент, используя энергию макроэргов (АТФ) продвигает рибосому по иРНК на один триплет (шаг) по направлению к 3’ концу иРНК . При этом из участка «П» тРНК освобождается и выходит в цитоплазму, а её место занимает аминоацил-тРНК несущая триптофан (Т) и прикреплённый к триптофану метионин (М). «А» центр становится свободным и на кодон, находящейся в нём иРНК, начинают претендовать другие цитоплазматические аминоацил-тРНК (рис. 67, Ж). Присоединяется та аминокислота, антикодон которой комплементарен кодону иРНК «А» участка (рис. 67, З). Затем цикл повторяется.
Функциональные обязанности малой и большой субъединиц рибосом, различны. Малая субъединица присоединяет аминоацил-тРНК (т.е. декодирует информацию), а большая субъединица отвечает за образование пептидной связи между аминокислотами.
в. Терминация.
Конец трансляции наступает тогда, когда в «А» участок рибосомы попадает один из стоп-кодонов (УАГ, УАА, УГА). Для них нет соответствующих аминоацил-тРНК и процесс синтеза белка останавливается.
К стоп-кодону присоединяются факторы терминации (белки), которые активируют ферменты, находящиеся в рибосомах. Эти ферменты, в свою очередь, осуществляют процесс отщепления синтезированного белка от тРНК и вызывают диссоциацию рибосомы на субъединицы.
При окончании синтеза полипептида, рибосома сходит с нити иРНК, «откусывая» при этом одно адениловое основание от Поли-А. Следующая рибосома, завершив синтез, также отщепляет одно основание и т.д. Как только все основания будут утрачены, иРНК разрушается ферментами. Таким образом, Поли-а, являются своеобразными биологическими часами, отмеряющими длительность существования иРНК и количество синтезированных с определённой иРНК белков.
Посттрансляционные процессы. Фолдинг и модификация белка – ТАКЖЕ НА ВСЯКИЙ ПОЖАРНЫЙ.
После освобождения синтезированной полипептидной цепи из связи с рибосомой, начинается фолдинг – сворачивание полипептидной цепи в определённую третичную структуру. В этом процессе могут принимать участие специальные соединения, находящиеся в клетке. Небольшие полипептидные цепочки приобретают третичную структуру спонтанно. В укладке полипептидов с высоким молекулярным весом принимают участие специальные ферменты, например шапероны и такие ионы как кальций. Другой, не менее важный процесс – модификации некоторых белков заключается в присоединению к ним углеводного или другого компонента. В результате формируются сложные белки, например, гликопротеины.
