
Дополнительные задания
Задание № 2.
(Часть 1) Описать одну из пород магматического происхождения ультраосновной группы.
Перидотит(рис 2.1) (от фр. péridot — перидот, или оливин) — полнокристаллическая горная порода ультраосновного состава, состоит главным образом из оливина (Mg, Fe)2[SiO4] (70-30 %) и пироксенов (Mg, Fe, Ca)2Si2O6 (30-70 %), иногда с роговой обманкой. В виде второстепенных минералов встречаются: магнетит, пирротин, хромит, шпинель, гранат и др.; иногда перидотиты содержат платину и некоторые никелевые минералы.
Цвет. Порода тёмной окраски, чаще всего зелёного или зеленовато-серого цвета.
Структура. Полнокристаллическая, равномерно кристаллическая.
Текстура. Массивная
Отдельность. Пластовая, параллелепидиальная.
рис. 2.1. Перидотит
Перидотиты слагают большую часть верхней мантии Земли. В земной коре встречаются в составе расслоенных интрузивных массивов сложенных ультраосновными (дуниты, перидотиты) и основными (троктолит, габбро, норит) породами (например, лополит Бушвельда), в виде тектонических пластин в офиолитовых комплексах. Наиболее глубинные перидотиты, вынесенные с глубин 150—300 км встречаются в виде ксенолитов в кимберлитовых трубках.
Практическое значение. С массивами перидотитов связаны месторождения хромита, платиновых и силикатных никелевых руд, хризотил- асбеста,талька и др. полезных ископаемых.
Разновидности. Перидотит с ромбическим пироксеном называется гарцбургитом, с моноклинным — верлитом; с моноклинным и ромбическим одновременно — лерцолитом.
(Часть 2) Описать одну из пород осадочные химического происхождения.
Известня́к(рис 2.2) — осадочная горная порода органического, хемогенного происхождения, состоящая почти на 100 % из CaCO3 (карбоната кальция) в форме кристаллов кальцита различного размера. Благодаря широкому распространению, легкости обработки и химическим свойствам известняк добывается и используется в большей степени, чем другие породы, уступая только песчано-гравийным отложениям. Известняки бывают разных цветов, включая черный, но чаще всего встречаются породы белого, серого цвета или имеющие коричневатый оттенок. Объемная плотность 2,2–2,7. Это мягкая порода, легко царапающаяся лезвием ножа.
Известняк, состоящий преимущественно из раковин морских животных и их обломков, называется ракушечником (ракушняком).
Входящие в состав известняка вещества способны хотя и в малых количествах, но растворяться в воде, а также медленно разлагаться на углекислый газ и соответствующие основания; первый процесс — важнейший фактор образования карстовых пещер, второй, происходящий на больших глубинах под действием глубинного тепла земли, даёт источник газа для минеральных вод.
При метаморфизме известняки перекристаллизируются и образуют мраморы.
Известняки бывают нуммулитовыми, мшанковыми, ракушечниками и мраморовидными — массивно-слоистыми и тонкослоистыми.
рис. 2.2 Известняк
Применение:
Известняк широко применялся в качестве строительного материала, мелкозернистые разновидности использовали для создания скульптур.
Обжиг известняка даёт негашёную известь — древний вяжущий материал, до сего времени применяемый в строительстве. Одним из основных строительных материалов, получаемых из известняка, является известняковый щебень, который широко используется в дорожном строительстве и в производстве бетонов.
Изделия из известняка применяются:
-для строительства зданий;
-для экстерьера строений- в качестве наружных лестниц, цоколей, при оформлении фасадов;
-в интерьере помещений: дверные проёмы, стены, камины, полы, ванные комнаты;
-при ландшафтном дизайне;
-для таких профильных изделий как лестницы, колонны, порталы каминов, наличники и др.
-для изготовления столешниц, подоконников, тумб, барных стоек и т.д.
Разнообразие цветовой гаммы от белого до красного позволит создать изделия из известняка, которые наилучшим образом подчеркнут индивидуальность дома и дизайнерский вкус.
Известняк предоставляет возможность создавать ровные и гладкие плоскости для дальнейшей работы над ним и создания эксклюзивных поверхностей и форм.
Изделия из известняка применяются для облицовки зданий, оград и цоколей. В отличие от искусственного камня известняк не теряет со временем, при воздействии внешних факторов, свой декоративный вид, сохраняя красоту и форму. Различные ажурные орнаменты и рельефы придадут строению неповторимый облик. Имея высокую популярность, особенно в последнее время, белый камень даёт возможность показать красоту декоративной облицовки при правильном выборе рисунка и цвета. К тому же он обладает такими незаменимыми качествами, как морозоустойчивость, эстетичность и низкая теплопроводность. Сделанные из известняка, или облицованные им, здания выглядят выразительно и величественно.
Используются изделия из известняка в ландшафтном проектировании в качестве оформления садов, площадок и дорожек. Как наиболее простой в уходе, долговечный и эстетичный, известняк также применяется при строительстве барбекю, арок и альпийских горок, которые будут идеально смотреться на прилегающей к дому территории.
Разнообразие окраски известняка позволяет сделать облицовку каминов на любой вкус заказчика и в соответствии с общим проектом помещения. А его податливость обработке предоставляет простор для фантазии дизайнера, которая подчеркнёт изящество и красоту камина.
Благодаря своим природным свойствам, известняк, в отличие от других камней, с годами становится прочнее, что подтверждается историческими фактами. Он прекрасно гармонирует с другими строительными материалами и поддерживает микроклимат в помещении, хорошо пропуская воздух. Применяют известняк также при очистке воды и для защиты различных деревьев и кустарников от насекомых.
Задание 6(з). Составить описание поперечного разреза речной долины и озерного побережья по схеме (з).
Как известно, в речных долинах образуется лестница террас, возвышающихся друг над другом. Они называются надпойменными террасами. Последовательность террас отвечает последовательным циклам эрозии.
Каждый цикл начинается врезанием водного потока и заканчивается выработкой нового днища долины, превращающегося затем в террасу. Самая высокая терраса является наиболее древней, а нижняя самой молодой. Нумерацию террас обычно начинают снизу, от более молодой.
У каждой террасы различают следующие элементы: террасовидную площадку, уступ или склон, бровку террасы, тыловой шов, где терраса сочленяется со следующей террасой или с коренным склоном, в который врезана долина в целом.
Уступ каждой террасы и площадка нижележащей террасы соответствует одному циклу эрозии. Различная степень выраженности уступа террас зависит от их возраста и последующих экзогенных процессов.
В поперечном разрезе речной долины (схема з) выделяется русло, пойма, заливаемая в период паводков, первая и вторая надпойменные террасы, берег. Такой тип речных террас относится к аккумулятивному типу.
Аккумулятивные типы речных террас – это такие террасы, в которых и площадка, и уступ полностью сложены аллювиальными отложениями, а цоколь из коренных пород всегда ниже уровня реки и никогда не обнажается.
Аккумулятивные типы террас – типы речных террас, формирующиеся при устойчивой тенденции к опусканию.
Такое строение свидетельствует о том, что река прошла весь цикл развития от глубинного врезания до формирования поймы с накоплением аллювия, которая в последующем была прорезана и оставлена в виде террасы.
Произошло наложение аллювиальных отложений друг на друга. Аллювий средней эпохи Q2 слагает только правую часть надпойменной террасы. Это говорит о том, что аллювий более молодого типа, в нашем случае Q3 – верхней эпохи, размыл мощную толщу Q2 и , накапливаясь, образовал надпойменную террасу. Ещё ниже залегает слой современной эпохи Q4 . Этот аллювий слагает пойму и русло реки.
Изучение речных террас, их строение имеет большое научное и практическое значение. Типы террас, высоты их поверхностей и цоколя, состав аллювия, соотношение его различных фаций позволяют судить об истории новейшего развития территории, о климатических изменениях. С аллювиальными отложениями связаны россыпные месторождения многих важных полезных ископаемых.
Вопрос №6.Происхождение и свойства минералов
ПРОИСХОЖДЕНИЕ И УСЛОВИЯ НАХОЖДЕНИЯ МИНЕРАЛОВ
Минералогия не ограничивается определением свойств минералов, она исследует также происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.
Большая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов {см. табл. Л) составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.
По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% - наиболее распространенных. Важнейшие из них - полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже - барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином. См. таксисе ЗЕМЛИ СТРОЕНИЕ.
Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%).
В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.
Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).
Осадочные породы. Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые - из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.
Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов, ниобия и других редких металлов.
Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Большая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.
Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты — обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.
Метаморфические породы.
Региональный метаморфизм. Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубослаанцеватые метаморфические породы — гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.
Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.
Метасоматоз. В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд — скарпов, которые нередко вмещают оруденение.
ГЛАВНЫЕ СВОЙСТВА МИНЕРАЛОВ
Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие и в настоящее время большое значение при их описании и визуальной (в частности, полевой) диагностике. Эти характеристики, а также оптические, химические, электрические, магнитные и иные свойства зависят от химического состава и внутреннего строения (кристаллической структуры) минералов. Первостепенная роль химии в минералогии была осознана к середине 19 в., но важное значение структуры стало очевидным лишь с внедрением рентгенографии. Первые расшифровки кристаллических структур были выполнены уже в 1913 английскими физиками У.Г.Брэггом и У.Л.Брэггом.
Минералы - это химические соединения (исключение составляют самородные элементы). Однако даже бесцветные, оптически прозрачные образцы этих минералов почти всегда содержат небольшие количества примесей. Природные растворы или расплавы, из которых кристаллизуются минералы, обычно еоетоят из многих элементов. В процееее образования соединений немногочисленные атомы менее распространенных элементов могут замещать атомы главных элементов. Такое замещение настолько обычно, что химический состав многих минералов лишь очень редко приближается к составу чистого соединения. Например, состав распространенного породообразующего минерала оливина меняется в пределах составов двух т.н. конечных членов ряда: от форстерита, силиката магния Mg2Si04, до фаялита, силиката железа Fe2Si04- Отношения Mg:Si:0 в первом минерале и Fe:Si:0 - во втором составляют 2:1:4. В оливинах промежуточного состава значения отношений те же, т.е. (Mg + Fe):Si:0 равно 2:1:4, а формула записывается в виде (Mg,Fe)2Si04, Если относительные количества магния и железа известны, то это можно отразить в формуле (Mgo,8oFeoJ2o)2Si04, из которой видно, что 80% атомов металла представлены магнием, а 20% - железом.
Структура. Все минералы, за исключением воды (которую - в отличие от льда - обычно не относят к минералам) и ртути, при обычных температурах представлены твердыми телами. Однако, если воду и ртуть сильно охладить, они затвердевают: вода - при 0° С, а ртуть - при —39° С. При этих температурах молекулы воды и атомы ртути образуют характерную правильную трехмерную кристаллическую структуру (термины «кристаллический» и «твердый» в данном случае почти равноценны). Таким образом, минералы представляют собой кристаллические вещества, свойства которых определяются геометрическим расположением составляющих их атомов и типом химической связи между ними.
Элементарная ячейка (наименьшее подразделение кристалла) построена из регулярно расположенных атомов, удерживаемых вместе благодаря электронным связям. Эти мельчайшие ячейки, бесконечно повторяющиеся в трехмерном пространстве, образуют кристалл. Размеры элементарных ячеек в разных минералах различны и зависят от размеров, чиела и взаимного расположения атомов в пределах ячейки. Параметры ячейки выражаются в ангстремах (А) или нанометрах (1 А = 10-8 см = 0,1 нм). Составленные вместе элементарные ячейки кристалла плотно, без зазоров заполняют объем и образуют кристаллическую решетку. Кристаллы подразделяются по признаку симметрии элементарной ячейки, которая характеризуется соотношением между ее ребрами и углами. Обычно выделяют 7 сингоний (в порядке повышения симметрии): триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую (изометрическую). Иногда тригональную и гексагональную сингонии не разделяют и описывают вместе под названием гексагональной сингонии. Сингонии подразделяются на 32 кристаллических класса (вида симметрии), включающих 230 пространственных групп. Эти группы впервые были выделены в 1890 российским ученым Е.С.Федоровым. При помощи рентгеноструктурного анализа определяют размеры элементарной ячейки минерала, его сингонию, класс симметрии и пространственную группу, а также расшифровывают кристаллическую структуру, т.е. взаимное расположение в трехмерном пространстве атомов, составляющих элементарную ячейку.